

Right Click → View Source
© PerfTestPlus, Inc. 2011 1

Right Click
→

View Source

by:

R. Scott Barber

Right Click → View Source
And other tips for performance testing the front end

I recently read High Performance Web Sites: Essential Knowledge for

Frontend Engineers by Steve Souders, O’Reilly, 2007. The book is sub-
titled “14 Steps to Faster-Loading Web Sites.” Before you stop reading
because this is a book written for developers, consider the following:

• The research Souders presents suggests that approximately 80-90% of
a web page’s response time results from front-end design decisions.
My experience suggests numbers more like 50-80%, but most of my
experience comes from projects where existing multi-user
applications are being retro-fitted with a web-based front end and/or
applications with significant back-end performance issues that I have
been called in to help find.

• Virtually all of the tools, training, articles, and conference talks
available to individuals who test the performance of software systems
are heavily focused on the back-end. So much so, in fact, that most
dismiss the front-end aspects of system performance as something not
worth worrying about, ostensibly because we can’t control the end-
user’s system.

• In my experience, the front-end design and development of web sites
is conducted with little to no thought to performance, outside of
possibly reducing the size of the graphics. Additionally, I’ve never
been made aware of a team conducting peer review on the HTML that
generates the web page on the client side, never been made aware of
unit tests on such code, nor witnessed a tester deliberately and
proactively testing the HTML for possible performance issues.

Put these things together, and what you get is no one paying attention to,

or checking for, potential performance improvements in the part of the web
page most likely to contain the most opportunities for the largest and cheapest
performance improvements. Reading this book, I realized that I frequently
test for most of these front-end performance issues without realizing it, that
he mentioned some I likely would have never thought to test for, that there
were a few front-end performance issues mentioned in the book I wouldn’t
have even known to test for, that it’s been a mistake to not test for these items
(or call them out while teaching testers) more deliberately, and that these tests
are low-cost, both in terms of time and in terms of the tools and resources
required. In fact, I frequently conduct most of these tests during the first 15
minutes of performance testing I conduct on a web site, though I admit that in
15 minutes I can generally only test a couple of pages.

Throughout this article, I describe how to conduct tests manually, using

Right Click → View Source
© PerfTestPlus, Inc. 2011 2

load generation tools, network protocol analyzers, helper websites, and browser plug-ins. I have
validated the techniques using the following free tools – not free trials, but free-with-no-strings-
attached. If you work for a company that doesn’t permit the use of free tools, I’m certain that a quick
web search will help you turn up dozens of alternatives that will cost your organization enough money
for them to take the tool seriously (for those of you who think this is a joke, it’s not. More than 50% of
the teams I consult with and individuals I train report not being permitted to use freeware, open source
software, shareware, or even time-limited free trials on company machines or networks.).

• Free or Open Source Load Generators (a.k.a. Performance Testing Tools)
o JMeter (http://jakarta.apache.org/jmeter/)

o WebLoad (http://www.webload.org/)

o OpenSTA (http://www.opensta.org/)

• Free or Open Source Network Protocol Analyzer
o Ethereal (http://www.ethereal.com/)

o Fiddler (http://www.fiddlertool.com/)

• Free Browser Plug-Ins
o Firebug (http://www.getfirebug.com/) with YSlow

(http://developer.yahoo.com/yslow/) for Firefox

o HttpWatch (http://www.httpwatch.com) for IE

• Free Helper Websites
o Web Page Analyzer - from Website Optimization: Free Website Performance Tool

and Web Page Speed Analysis
(http://www.websiteoptimization.com/services/analyze/)

o Gomez Instant Site Test (http://www.gomez.com/info_center/instant_test.php)

With that, let’s take a look at some of the tests you can conduct with no more training than you’ll
get in this article, tests that could lead to dramatic improvement in end-user response times without
requiring that you look any deeper than the web server.

Number of HTTP Requests

Web pages are not retrieved via a single transaction. Pages generally include a single request for
the HTML document, one or more requests for stylesheets, one or more requests for external scripts,
and multiple requests for graphics, multi-media content, and third party content such as advertisements.
Even when many of these objects are stored locally in the browser’s cache, a request is still frequently
sent to the server to determine if the object in the cache is still “fresh.” What this means is that each
object used in rendering a web page carries with it significant potential for increased overhead, and
thus degraded performance from an end-user perspective, even when the client has a “primed” browser
cache containing the object in question. Determining the number of requests a page makes, and what it
is requesting, can be done in several ways.

http://jakarta.apache.org/jmeter/
http://www.webload.org/
http://www.opensta.org/
http://www.ethereal.com/
http://www.fiddlertool.com/
http://www.getfirebug.com/
http://developer.yahoo.com/yslow/
http://www.httpwatch.com/
http://www.websiteoptimization.com/services/analyze/
http://www.gomez.com/info_center/instant_test.php

Right Click → View Source
© PerfTestPlus, Inc. 2011 3

No matter what method you use, you will want to begin by either clearing your browser cache or
requesting the page twice (one time using ctrl -> refresh to override the browser cache) to ensure that
you can view all of the requests. Since the following methods only collect actual requests, notclearing
or overriding the browser’s cache could cause an incomplete collection and lead you to think that no
stylesheets, scripts, images, or multimedia content is being requested, depending on a variety of
settings and conditions you may or may not be aware of and/or have any control over.

1. If you have access to a load generation tool or a network protocol analyzer, you can simply
start recording, then navigate to the page or pages of interest. Search your recording for
“GET” statements, and make a note of what objects are being requested. Remember that,
with some tools, the default view of the recorded script may only contain the base HTML
request, not the child requests (i.e. requests for linked stylesheets, external scripts, graphics,
etc.), thus requiring an additional step to view all of the requests.

2. If you are testing in an environment where you are permitted to install browser plug-ins, you
have several options available to make this task simple. The plug-ins I recommend,
depending on which browser you use or wish to test against, are:

a. Firebug with YSlow for Firefox.

b. HttpWatch for IE.

3. If you have no tools available, you still have several options:

a. Visit one of the helper web sites listed above, type the URL for the page you want to
test into the text box, and push the “Submit” button.

b. In Firefox, right click on the page, select Page Info, then navigate to the Media tab.
Note that this method does not reveal scripts and stylesheets, but will still show you
requested graphics and other multi-media content.

c. In IE, right click on the page and select View Source. In this case, you will need to
search the code for “link” and “img” tags. Additionally, if you find links to
stylesheets (any link to a .css file), you will also need to download each stylesheet
by manually requesting it from the navigation bar and searching it for “url” entries
which may be used to request scripts, images, or multimedia content. (This is by far
the most cumbersome method, but it will still get you the information).

Armed with your list of requests, the first thing you are looking for is volume—excessive requests
slow things down. There are several indicators to look out for to decide whether or not the requests
you see are excessive.

1. More than one request for an external stylesheet. While it is sometimes a good design
decision to separate page styles into more than one external stylesheet, this is not common
and is certainly not generally helpful in terms of performance. Generally speaking,
maintaining more than one external style sheet is a good idea only if there is one base
stylesheet that applies to many web pages and a second, large, stylesheet with styles that
only apply to a few web pages.

2. More than one request for scripts from the same domain. Even though there are more
sound reasons for linking to multiple external scripts than linking to multiple external

Right Click → View Source
© PerfTestPlus, Inc. 2011 4

stylesheets, it still not common for links to multiple external scripts to result in better
performance than linking to a single, consolidated external script. For example, if the page
you are testing is a complex data entry form, it may make sense for the form validation
script to be separate from other scripts that are common to all pages. Doing so would
reduce the size of all pages except the form, thus improving performance on those pages,
even though the extra request would degrade performance slightly on the form page.
Regardless, more than one external script is at least worth asking about.

3. A lot of graphics. I can’t tell you how many is “a lot,” but I can tell you that currently, IE7
and FireFox 2.x default to 2 parallel downloads per hostname (for HTTP/1.1 web pages,
which most new sites are). This means that, no matter the size of your images, the browser
will only download 2 at a time, and that the next two won’t start until both of the preceding
two are complete. This is different from HTTP/1.0, where FireFox defaulted to 8 parallel
downloads per hostname and IE varied by version but never to fewer than 2. The impact of
this change is that using the fewest graphics of approximately the same size tends to result
in the best performance. This is counter to the notion that smaller graphics are always
better. Combining several small graphics into one or two larger graphics frequently
improves performance. There is, of course, a point of diminishing returns. Graphic size vs.
number of graphics is something that is worth working closely with the front-end designer
on, to test various options in search of optimal performance. A well respected “rule-of-
thumb” to guide your decision-making in these matters urges caution if a page contains
more than 12 total requests. This number is used by Souders in his book, Andrew B. King
in Speed Up Your Site: Web Site Optimization, New Riders, 2003 and most convincingly by
Aaron Hopkins in an article published on his site titled “Optimizing Page Load Time”
(http://www.die.net/musings/page_load_time/).

Sequence of HTTP Requests
Many of the same methods can be used to determine the sequence of the objects being requested

when a page loads. The exceptions are the helper websites we discussed previously and Firefox's
"Page Info" screen, as these group and/or sort requests by type and size to highlight volume and size
issues rather than sequence issues. The sequences you are most interested in are:

1. Request stylesheets first. Web pages will either not display at all until stylesheets (.css) have
been downloaded or appear to refresh themselves once the stylesheet is retrieved. For this
reason, it is critical that stylesheets are among the first items requested following the base
HTML page.

2. Request scripts last (or at least late). Once a script is requested, no other objects will be
requested until the script has been completely received. Additionally, browsers cease
displaying content while scripts are downloading. This means that any objects that complete
their download after the script has been requested won’t be displayed until the script has been
completely downloaded, thus making the rendering of a web page appear to stall. This means
that it’s highly desirable for scripts to be requested after the objects that are most interesting to
the end-user. Remember, most end-users perceive responsiveness based on the time it takes for
the content they are interested in to appear, rather than the time it takes the entire page to load.

http://www.die.net/musings/page_load_time/

Right Click → View Source
© PerfTestPlus, Inc. 2011 5

Whether you are viewing the HTML source or captured requests, what you are looking for is that
stylesheets are requested first and scripts are requested either last or at least very near last. There is a
common argument that scripts controlling user interactions such as image maps and roll-over objects
should be requested early so that the user will have the “proper” experience, even while the page is
downloading. In my experience, however, a user is much more likely to become frustrated or abandon
a website if it appears to be stalled while downloading than if a roll-over image or image map isn’t
enabled until the page downloads completely.

Redirection and/or Hidden Errors
You can use the same methods you used to check for appropriate request sequencing to check for

redirection (3xx series response codes), client errors (4xx series response codes), and server errors (5xx
series response codes). In this case, the main indicators you are looking for are the following:

1. Excessive 3xx series response codes. 3xx series codes indicate that the request was processed,
but that the browser must retrieve the object from another location – resulting in additional
request/response pairs. While there are plenty of sound reasons for the redirection of some
requests, it’s worth making sure that redirection is being done intentionally and for good reason.
For example, redirecting from a removed web page to its replacement, or redirecting from an
obvious misspelling of a web page to the correct page is a good reason. Redirecting requests
for images because the image’s parent directory has been moved but no one has bothered to
update the link is probably not a good reason accept the inherent performance degradation
associated with the additional requests associated with redirection.

2. Any 4xx series response codes. A 4xx series code is returned when there is a problem with the
client request. The most common is 404, which indicates that the requested object was not
found on the server. Generally speaking, if the web page is displaying and functioning
properly, but individual requests are returning 4xx codes, that indicates that the page is simply
requesting unneeded objects and taking extra time to do so.

3. Any 5xx series response codes. 5xx series codes indicate that an error occurred on the web
server while trying to fill the request. Any 5xx series code should be of interest to the
development team.

I refer to these as hidden errors because when they occur for objects other than the base HTML
document they are frequently not obvious or even visible to the end-user. Sometimes seeing these
response codes is also indicative of deeper errors, but, they all result in requests that do not contribute
to the display or content of the page and are frequently entirely unnecessary.

HTTP Response Headers

To check HTTP response headers, you will need to use a load generation tool, network analyzer, or
one of the browser plug-ins. If you don’t have any of those tools available, another helper web site
might be of value. I suggest Peter Forret’s "View and analyze HTTP headers" page
(http://web.forret.com/tools/analyze.aspx), where you can enter the URL of a web page and the site will
retrieve a list of the HTTP headers sent back by the web server, so you can check page expiration and
caching settings. The details about what parts of the response are appropriate vs. unnecessarily

http://web.forret.com/tools/analyze.aspx

Right Click → View Source
© PerfTestPlus, Inc. 2011 6

performance-inefficient are highly dependent on variables such as the frequency with which the site
and/or objects change, the frequency with which users of your site visit the site, and the relative risk of
those users viewing stale content. Nonetheless, the following items are consistently worth inspecting:

1. Check for an appropriate Expires: entry. If the HTTP response for an object does not
include an Expires: line, every time a user requests a page containing that object, a request will
be sent to the server to determine whether or not the cached version is “fresh.” If you have
objects that are unlikely to change frequently (for instance, the company logo) you can avoid
the “freshness check” request with a date/time in the Expires: line that is far in the future.
Expires headers are most often used with images, but they are often also appropriate for other
components including scripts, stylesheets, AJAX, and Flash components. Look for objects with
no Expires: line and for Expires: entries that seem inappropriate to you.

2. Check for appropriate ETags. Entity tags (ETags) are a method of identification that web
servers and browsers use to determine whether or not the object cached on the client’s machine
matches the one on the server. The challenge with ETags is that they are generally unique to a
specific web server, meaning that using them may actually be detrimental if the web site has
multiple web servers. If you know that the web site uses a single web server, ETags are
probably a good idea. If the web site uses multiple servers, you will want to inquire about
whether the multiple servers have been accounted for, or recommend that the ETags be
removed.

3. Check other cache controls. You may or may not observe other entries following lines such
as Cache-Control:, Last-Modified:, Pragma:, Set-Cookie:, and Age:. If you do observe those
lines, ensure that the entries make sense to you. If you don’t observe those lines and feel like
they should be there, bring it up to someone.

The bottom line is that you want to check HTTP response headers to determine whether or not the
web site has been configured appropriately to take advantage of browser caching on the client side.
Frequently, the only way to determine the appropriateness of these entries is to spend time with
administrators and architects discussing both how the site is used and how it has been designed,
specifically related to client browser caching.

Source Code and Objects
Finally, if you haven’t done so already, you’ll need to manually examine the source of the HTML,

.css, scripts, graphics, and other remaining objects. To date, I have not found any specific tools that
save time over manual inspection in enough situations to recommend for these final front-end
performance testing tasks, although HTML, script, and graphics editors appropriate to the web site are
generally useful. The final front-end performance testing tasks that I recommend are:

1. Ensure that HTML source code does not included embedded scripts and CSS expressions.
It is extremely rare that performance is improved by including scripts and CSS elements or
expressions directly in the HTML. The reason for this is simple: the base HTML for a web
page is the part of the page that is most frequently updated and therefore least frequently served
from cache. Since the HTML is so much more likely to be downloaded every time, it only
makes sense to keep it as small as is reasonable. Keeping scripts and CSS elements external to

Right Click → View Source
© PerfTestPlus, Inc. 2011 7

the HTML, and thus cacheable, is virtually certain to improve performance, on average, over
time, across the users of the web site.

2. Ensure that styles and scripts are not duplicated. In my experience, stylesheets and script
files are notorious for containing duplicate or overlapping content. Sometimes content is
duplicated across separate files; other times it is duplicated within the same file. While you
may not want to spend the time to do a complete review, a quick scan of the source can often
reveal whether or not there is significant overlap or duplication.

3. Check for code minification. Believe it or not, “minification,” at least according to the
Random House Unabridged Dictionary, is a valid English word meaning “the act of
minimizing.” With regard to computer code, it refers to condensing and optimizing the code to
perform the desired function using the fewest lines and/or characters of code. While inspecting
the HTML source code, external script files, and stylesheets, you want to look for excessive
comments, white space, line breaks, variable name length, and other items that increase file
size.

4. Check the appropriateness of graphics' size and compression. It may seem obvious, but
many web designers are still using graphics in formats that have unnecessarily large file sizes,
in sizes different than the height/width they are to be displayed in, and of a quality well in
excess of what is necessary or reasonable for the purpose of the web site they are being
displayed on. In general, .gif formatted images compressed to 64 or fewer colors are more than
adequate for most graphics and thumbnails; .jpg formatted images compressed to 256 or fewer
colors are typically adequate for photographs; and it is rarely justifiable to use HTML
height/width properties to shrink or stretch an image rather than creating a new image of the
correct size.

In each of these cases, use common sense as your guide. For example, some web sites reduce all of
their file, directory, and variable names to two or fewer characters each as a matter of policy to
minimize file size. From a purely performative perspective, this is excellent; however, the additional
work required to document and/or maintain the code makes this practice completely unreasonable for
most web development efforts. You will have to work with your team to find the proper balance
between duplication/ minification/ compression and practicality.

Summary
This article describes several tests that can be used to determine if a web site is likely to exhibit

poor front-end performance. Identifying these areas of potential performance improvement could
result in a 50% or greater reduction in the user-perceived response time of the web site. I am confident
that once you get your tool box of applications, plug-ins, and helper web sites in place, and practice
these tests just a few times, you will be able to scan a website for significant offenders of each of these
items in less time than you just spent reading this article. With such a significant potential for dramatic
performance improvement, and such a small investment in time and tools required, I see absolutely no
reason why any web site should go live without these tests being conducted.

Right Click → View Source
© PerfTestPlus, Inc. 2011 8

About the Author

Scott Barber: Tester, Author, Speaker, Disrupter & Dad

A prominent thought-leader in the area of software system performance and testing software systems in
general, Scott Barber, founder and Chief Technologist of PerfTestPlus, makes his living writing,
speaking, consulting, and coaching with the goal of advancing the understanding and practice of
software testing. Scott has contributing to four books (co-author, Performance Testing Guidance for
Web Applications, Microsoft Press; 2007, contributing author Beautiful Testing, O’Reilly Media; 2009,
contributing author How to Reduce the Cost of Testing, CRC Press; 2011, author Web Load Testing for
Dummies, John Wiley & Sons, Inc.; 2011), composed over 100 articles and papers, delivered keynote
addresses on five continents, served the testing community as the Executive Director of the Association
for Software Testing, and co-founded the Workshop on Performance and Reliability.

Today, Scott is focused on applying and enhancing his thoughts on delivering world-class system
performance in complex business and technical environments with a variety of clients and is actively
building the foundation for his next project: driving the integration of testing commercial software
systems with the core objectives of the businesses funding the creation of those systems.

When he’s not “being a geek”, as he says, Scott enjoys spending time with his partner Dawn, and his
sons Nicholas and Taylor at home in central Florida and in other interesting places that his accumulated
frequent flier miles enable them to explore.

http://www.perftestplus.com/
http://www.amazon.com/gp/product/0735625700?ie=UTF8&tag=perftestplus-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0735625700
http://www.amazon.com/gp/product/0735625700?ie=UTF8&tag=perftestplus-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0735625700
http://oreilly.com/catalog/9780596159825
http://www.amazon.com/How-Reduce-Cost-Software-Testing/dp/1439861552
http://www.associationforsoftwaretesting.org/
http://www.associationforsoftwaretesting.org/
http://www.performance-workshop.org/

	Right Click → View SourceAnd other tips for performance testing the front end
	Number of HTTP Requests
	Sequence of HTTP Requests
	Redirection and/or Hidden Errors
	HTTP Response Headers
	Source Code and Objects
	Summary
	About the Author

