

1

Part 10: Creating a Degradation Curve

(This item originally appeared on The Rational Developer Network, an online
community for customers of IBM Rational Software. To find out more, including
how you can get a free evaluation to the Rational Developer Network, please
visit http://www.rational.com/services/rdn/find_out_more.jsp)

The previous four articles in this series have each dealt, at least in part, with the topic of
performance-related results reporting. This article will conclude our look at this topic by
discussing the single most powerful performance graph at our disposal, the degradation
curve.

This is the tenth article in the "User Experience, Not Metrics" series, which focuses on
correlating customer satisfaction with your Web site application's performance as
experienced by users. Here's what the series has covered so far:

• Part 1: Introduction
• Part 2: Modeling Individual User Delays
• Part 3: Modeling Individual User Patterns
• Part 4: Modeling Groups of Users
• Part 5: Using Timers
• Part 6: Working with Outliers
• Part 7: Consolidating Test Results
• Part 8: Choosing Tests and Reporting Results to Meet Stakeholder Needs

• Part 9: Summarizing Results Across Multiple Tests

This article is intended for both Rational TestStudio users and managers with some
Microsoft Excel experience. All of the information will be provided to create degradation
curve charts, but I'm assuming that you've read Parts 6, 7, and 9 and are comfortable
with the Excel walkthroughs included in those articles.

What’s a Response Time Degradation Curve?

“Although Internet bandwidth and Web server capacity have improved in recent years,
Web site performance problems continue to challenge developers and testers. The
combination of complex Web-based applications and the dynamic characteristics of
Internet traffic can cause significant degradation in Web site performance,” write Steven
Splaine and Stefan P. Jaskiel in The Web Testing Handbook.

I recently had the opportunity to attend a presentation given by Steve Splaine. Toward
the middle of his presentation, he showed a slide with a chart that he simply called “the
performance graph.” I was both pleased and surprised to see that this was the same
chart that I call a response time degradation curve. Regardless of the name you give
this chart, by the end of this article I’m certain you’ll agree that this is the most powerful
chart in a performance tester’s arsenal for presenting information to stakeholders. The
value of this chart lies in the fact that it answers the questions that begin with “How
many . . . ” and “How fast”
 User Experience, not Metrics: Creating a Degradation Curve

2

Figure 1 shows a relatively basic example of a response time degradation curve. This chart plots user experience
against user load. The end-to-end response time in seconds is plotted vertically on the left side and the total
number of users accessing the system is plotted horizontally across the bottom. This particular version of the chart
also includes the data table. You’ll notice that the user experience time increases, or degrades, as more users are
introduced to the system, exactly as we would expect.

Figure 1: A basic response time degradation curve chart

I chose this particular chart because the data yielded the most common shape for a response time degradation
curve. The shape of the curve in Figure 1 is what you’ll see more than 95% of the time when you create this chart.
I would go so far as to say that if you don’t see this shape, one of the following conditions is almost certainly true:

• The user community model isn’t accurate.

• The scripts aren’t representative of the user community model.

• The system under test can’t handle multiple users at all.

• The test didn’t actually stress the system.

Regions of the Curve

The shape of a typical response time degradation curve can be broken down into four regions:

• the single-user region

• the performance plateau

• the stress region

• the knee in performance

Each of these regions contains a significant amount of useful information about the system under test. The
following sections discuss these regions in detail. All of this is what makes this chart so valuable. Knowing what
the shape of the curve will be before test execution allows you to make accurate preliminary assessments based
on the location of these different areas of the chart without additional analysis.

User Experience, not Metrics: Creating a Degradation Curve

3

The S ing le -Use r Reg ion

The first region of the curve, as we move from left to right, is the single-user region, as highlighted in Figure 2.

Figure 2: The single-user region of a degradation curve

Viewing this region, we see that the performance for a single user is actually slower than for several levels of
multiple users. This is normal. The response time for single users (as generated by Rational tools or any other
load-generation tool) will generally be slightly slower than the best performance seen on a site, for reasons that
have to do with how load-generation tools work (that is, by threading), caching, “sleeping” hard drives, and such.
You can think of hitting the site with a single user as being like driving your car on a cold day. If you don’t let your
car warm up a little before taking it on the freeway, its performance will probably be a little sluggish until it does
warm up. While this isn’t a perfect analogy, it does give you an idea of what’s going on. This is why I don’t
recommend using single-user loads as a basis of comparison for future load tests.

The Pe r fo rmance P la teau

I like to call the region to the right of the single-user region the “performance plateau,” as noted in Figure 3.

Figure 3: The performance plateau of a degradation curve

User Experience, not Metrics: Creating a Degradation Curve

4

In this region (in this case, in the range from about 10 to about 100 simulated users) we see that the performance
gets better and stays pretty consistent for a while. Whatever the performance of the system is in this region, it’s the
best performance you can ever expect from your system without conducting further tuning (assuming your tests are
modeled properly). Results from any test residing in the performance plateau are good candidates for baselines or
benchmarks to be used as a basis of comparison for future load tests. I generally recommend that benchmarks be
15% of the greatest user load before the knee in performance (described below).

The S t r ess Reg ion

In the region between the 100-user and 175-user loads in our example curve, we see that response times start
getting longer as the load increases. This is known as the stress region, as pointed out in Figure 4.

Figure 4: The stress region of a degradation curve

Technically, this region is the degradation part of the curve, where it’s evident that the system is being stressed but
is basically handling the load. The stress region begins when the response time starts to increase slowly and ends at
the knee (discussed below). This is the area where the application/system is said to “degrade gracefully.” What this
means is that as the load increases in this region, the response time also increases, but not excessively. When the
application is fully tuned, the maximum recommended user load should be the load at the beginning of the stress
region, but the system continues to perform relatively well above this load for a period of time. This gives the
stakeholder a level of confidence that if more users than expected are accessing the system, the system will remain
stable and functional.

The Knee i n Pe r f o rmance

Above the 175-user load, we see response time start to climb very quickly in our example curve. The system is no
longer handling the load gracefully; it’s likely not functioning properly and may even be unstable. This change in
response time often happens very quickly and without warning, causing a sharp change in the slope, or direction, of
the curve that we call the knee in performance, as emphasized in Figure 5.

User Experience, not Metrics: Creating a Degradation Curve

Figure 5: The knee of a degradation curve

Where the knee occurs is the absolute maximum load you ever want your application/system to encounter. If you’re
still testing, this is the load that has exploited your critical bottleneck and should be researched in detail and
corrected if at all possible.

There will always be a knee in performance. If your chart doesn’t show one, it’s probably because you haven’t
stressed your system enough to find it. I recommend, whenever possible, that you continue testing until the knee is
found. That’s the only way to make conclusive estimates about the extent of the application’s scalability and to begin
conducting capacity planning exercises.

What’s the Confidence Interval of the Curve?

Level of confidence can be an extremely statistically complex topic. According to the StatSoft Inc. glossary, “the
confidence intervals for specific statistics (e.g., means, or regression lines) give us a range of values around the
statistic where the ‘true’ (population) statistic can be expected to be located (with a given level of certainty).” For
example, Figure 6 shows a 90% confidence interval for the regression line.

Figure 6: An example of a confidence interval from the StatSoft glossary

5User Experience, not Metrics: Creating a Degradation Curve

6

Personally, I have no desire to develop a complex mathematical equation to determine the “range of values
around the statistic where the ‘true’ statistic can be expected to be located.” Instead, let’s explore another
commonsense approach.

As you may recall from previous articles, I recommend reporting on the 90th percentile response. We’ve previously
interpreted this measurement to mean that 90% of all users will experience a page load time of not more than the
reported time. The question that follows is, How confident are we in those results? My answer is that I’m exactly as
confident in those results as I am in the accuracy of the model we tested. Of course, that isn’t a very useful
answer. This is where judgment comes into play.

I happen to know through experience and testing that if I model my workload distribution correctly and develop
scripts to match that distribution, the results from my tests are, at worst, statistically equivalent to results collected
from the production application. What that means is that I have 100% confidence in the accuracy of the results but
not of the tests themselves — and not of the model and/or my scripts. If we did have 100% confidence in both our
model and our scripts, we could say that based on the tests, we’re 100% confident that 90% of the users will
experience a page load time of not more than the reported time. I don’t know about you, but I would never make
that statement.

So how do we answer the question, How certain are we that the user community model and the scripts are
correct? Unless you’re lucky enough to be testing a site that’s already in production and run direct comparisons,
there’s no way to know the answer to this question. However, there is a way to demonstrate a confidence interval
in the results.

We discussed using multiple user community models in Part 4: Modeling Groups of Users. This discussion was
based on the difference between expected-case, best-case, and worst-case usage of the application. If we were to
design three user community models based on these criteria, then execute and graph them, we would get the
results shown in Figure 7.

0

10

20

30

40

50

60

1 u
ser

10 u
sers

25 u
sers

50 u
sers

75 u
sers

100 u
sers

125 u
sers

150 u
sers

175 u
sers

200 u
sers

225 u
sers

250 u
sers

R
e
s
p
o
n
s
e
 T
im
e
 (
S
e
c
)

Home Page Expected Home Page Best Case

Home Page Worst Case Performance Goal

Figure 7: A margin-of-error degradation curve

User Experience, not Metrics: Creating a Degradation Curve

7

A red dashed line has been added to represent the performance goal, and there are two additional lines on the
chart, representing the results from the series of tests using the worst-case (most performance-intensive) user
community model and the best-case (least performance-intensive) user community model. As you might expect,
the blue curve, from the expected user community model, falls in between the best- and worst-case lines. By
looking at where those curves cross the red line, we can see how many users can be accessing the system in
each case while still meeting the stated performance goal. If we’re 95% confident (by our own estimation) that the
best- and worst-case user community models are truly best- and worst-case, we can read the results from this
chart as follows: “The tests show, with 95% confidence, that between 100 and 200 users can access the system
while experiencing acceptable performance.”

You may be thinking that an acceptable-performance range of between 100 and 200 users is a pretty large range,
and it is in this case. When I reported these results, the stakeholders of the system also thought this range was too
large for comfort. This graph led to further discussion of the question, How good is good-enough performance?

Determining Good-Enough Performance

Defining what constitutes good-enough performance is one of the most difficult tasks of the performance
testing/engineering team. There are no industry standard rules governing performance, so it’s up to the
stakeholders to determine what performance they’ll deem acceptable, or good enough. Answering these key
questions can help the stakeholders decide what they’ll consider good-enough performance:

• What’s the maximum user load representing 90% of the expected use of the site?

• What are the performance expectations of the users of the system?

• What abandonment rate are the stakeholders willing to accept?

• How critical is it that the performance be improved immediately?

• How long will it be until the maximum user load on the system will be realized (that is, what’s the rollout
schedule of the application)?

In the case of our example, the stakeholders answered these questions and determined that the performance
represented by the charts above was acceptable for the phase 1 release but needed to be improved before phase
2. This gave the developers and testers three extra months to improve the performance of the application. In those
three months, they improved the performance so it would be acceptable at a load of between 425 and 500 users.

Creating the Degradation Curve

Now that we’ve discussed how to interpret and use the degradation curve, it’s time to describe how to create one.
There are three parts to the curve creation process:

• determining which tests need to be executed, and/or included in the curve

• determining which page or pages are to be included in the curve

• physically creating the curve

If these three activities aren’t each completed properly, the curve will likely be inaccurate and cause the
stakeholders to draw incorrect conclusions.

You’ll see that this can be an iterative process. For instance, you may determine which tests are to be executed
and which page load times will be included, then create the degradation curve only to find out that you didn’t find
the knee in performance. In this case, more tests will need to be executed with increasingly higher loads and the

degradation curve recreated until the knee is found.

User Experience, not Metrics: Creating a Degradation Curve

8

Which Tes ts A re Requ i r ed?

Determining the required tests is the easiest of the three steps. No matter what the maximum expected user load
of the application is, there are at least seven tests that need to be executed. They are as follows:

• a single-user test of every page to be included in the chart

• a benchmark test of every page to be included in the chart (normally 10–15% of the maximum expected user
load, using the agreed-upon user community model)

• a 25%-of-maximum-expected-load test of every page to be included in the chart, using the agreed-upon user
community model

• a 50%-of-maximum-expected-load test of every page to be included in the chart, using the agreed-upon user
community model

• a 75%-of-maximum-expected-load test of every page to be included in the chart, using the agreed-upon user
community model

• a 100%-of-maximum-expected-load test of every page to be included in the chart, using the agreed upon user
community model.

• A 125%-of-maximum-expected-load test of every page to be included in the chart, using the agreed-upon user
community model

The exact percentage distribution of the tests may vary, but remember that to see the proper shape of the curve,
at least seven points are required. Four of the points must represent the single-user load, the benchmark load, the
maximum expected load, and a load greater than the maximum expected load. The other three points should be
between the benchmark and maximum expected user loads.

If these seven points don’t result in a degradation curve that clearly shows the four regions described earlier, you
should add more tests at the proper loads to ensure the regions are clearly identifiable. This isn’t an exact science,
but rather requires a combination of trial-and-error and experience.

Remember that if you’re going to create a margin-of-error degradation curve, you’ll need to execute each of these
tests using your three user community models — best case, expected case, and worst case.

Which Pages Ge t Repo r ted?

Determining which pages get reported is a little trickier. Once again, this isn’t an exact science. In examining which
pages deserve to be included, you may find that several degradation curves are needed to display all of the
desired pages. I use the following rules to determine which pages to report:

• Always report performance of the home page. It’s the first page your users will see and if it performs poorly,
they’re unlikely to continue to use your site.

• Always report on the most server-intensive page, often a search or submit page. This page is often easy to
find by manual screening of the site. Simply pick the one that feels slowest.

• Always consider pages that generate reports or generate lists on the fly. For example, “my payment history” or
“view today’s most popular items” are good pages to consider.

• Consider including the simplest static page — often the “FAQ” or “About us” page.

• Consider any other page that may be suspected of poor performance for some reason.

Keep in mind that although this entire series of articles has focused on Web-based applications, all of the concepts
apply equally well to other types of applications such as client-server. For the purposes of designing a user
experience test, it may be helpful to think of the Web as an application presentation method rather than a software

architecture.

User Experience, not Metrics: Creating a Degradation Curve

9

How Is t he Deg rada t i on Cu rve Crea ted?

Once you’ve executed the tests required and determined which pages to include, it’s time to create the curve. Once
again, we’ll be copying our data from TestManager into Excel. But before we copy the data, we need to create the
table to hold the data. This table won’t need any special formatting like some of the tables in previous articles.
Simply list the pages to be included in the curve down the left side of the table and the user loads across the top of
the table, as shown in Figure 8.

Figure 8: Unpopulated degradation curve table

Now that we’ve created the table, it needs to be populated. The process of populating this table can be a little
tedious, but easy. Simply enter the 90th percentile (or whichever percentile measurement your organization prefers)
for each page and user load into the empty cells. The entered data for our example is shown in Figure 9.

Figure 9: Populated degradation curve table

All that’s left is to create the chart. We’ll do this in the same basic way that we’ve created charts in our previous
articles. We highlight all of the information in the degradation curve table, then choose Insert > Chart from the menu
bar and select the Line chart type. You can choose from the remaining options based on personal preference. I like
to leave the data table on this chart as shown in Figure 1, but you may choose not to. If you choose not to display
the data table, ensure that you do display the legend. You can also add the performance goal line as seen in Figure
7 by following the instructions in the next section.

How Is t he Marg in -o f -E r ro r Deg rada t i on Cu rve C rea ted?

To create the margin-of-error degradation curve, we must first create a new table to populate that resembles the one
in Figure 10.

Figure 10: Unpopulated margin-of-error degradation curve table

We need to populate the expected, best-case, and worst-case rows with the 90th (or other) percentile measurement,
much like we did for the degradation table. In the Performance Goal row, we need to enter the stated page load time
goal for the home page in every column. This will create the performance goal line in the chart. See Figure 11 for a
populated version of this table.

Figure 11: Populated margin-of-error degradation curve table

User Experience, not Metrics: Creating a Degradation Curve

10

To create the margin-of-error degradation chart, we highlight all of the information in the margin-of-error degradation
curve table, then choose Insert > Chart from the menu bar and select the Line chart type. For this chart I prefer to
not show the data table. I also prefer to use dotted or dashed lines to represent all of the lines other than the
expected case. These aren’t requirements, though. I encourage you to experiment with formatting the chart to meet
your individual needs.

Now You Try It

This article has described the considerations and steps for creating a degradation curve. The best way to internalize
this knowledge is to use it on your own projects. Unfortunately, I can’t realistically give you an entire Web site and
set of stakeholders to work with to practice every step of this process. What I can do is give you a set of data
exported from TestManager into Excel for you to practice with. I encourage you to use this data to evaluate which
pages to include in your charts, and then actually create both the degradation curve and the margin-of-error
degradation curve from this data.

Summing It Up

The degradation curve chart is the most powerful single chart in the performance tester’s / engineer’s arsenal. With
this one chart, all stakeholders of the system/application can see exactly how the system/application is performing at
different user loads as compared to the stated performance goals, all at a quick glance. Adding this single chart to
your reports and summaries will greatly improve communications about and understanding of current performance
of your system/application.

About the Author

Scott Barber is a System Test Engineer and Quality Assurance Manager for AuthenTec, Inc. and a member of the
Technical Advisory Board for Stanley-Reid Consulting, Inc. With a background in network architecture, systems
design, database design and administration, programming, and management, Scott has become a recognized
thought leader in the context-driven school of the software testing industry. Before joining AuthenTec, he was a
consultant specializing in Performance Testing/Analysis, a Company Commander in the United States Army, a DBA
and a Government Contractor in the transportation industry.

Scott is a co-founder of WOPR (the Workshop on Performance and Reliability), a semi-annual gathering of
performance testing experts from around the world, a member of the Context-Driven School of Software Testing and
a signatory of the Agile Manifesto. He is a Discussion Facilitator in the Rational Developer Network public forums
and a moderator for the Performance Testing and Rational TestStudio related forums on QAForums.com. Scott’s
Web site complements this series. Please visit it to find more detail on some topics and view slides from various
presentations he’s given recently. You can address questions/comments to him on either forum or contact him
directly via e-mail.

AuthenTec, Inc. is a leading semiconductor company providing advanced biometric fingerprint sensors to the PC,
wireless, PDA, access control and automotive markets. AuthenTec's FingerLoc and EntréPad product families utilize
the Company's patented TruePrintTM technology, the first technology capable of imaging everyone under virtually
any condition.
Stanley Reid Consulting, Inc. is a small, niche consulting company that focuses on IT organizational improvement
and recruiting and staffing of technical experts. Stanley Reid Consulting helps your team achieve consistent,
successful delivery of IT projects through the following services: IT Organizational Improvement Consulting, Expert
Supplemental Staffing, Technical Recruiting & Placement.

Copyright, 2003

User Experience, not Metrics: Creating a Degradation Curve

