
I have a passion for per-
formance testing. I came
by this passion accidental-
ly, but that’s a story for
another day. Here, in this
first instance of the Peak
Performance column, I’d
like to talk about the evo-
lution of modern perform-
ance testing.

For the sake of illustra-
tion, let’s draw an analogy
between the evolution of modern
astronomy and modern performance
testing. For argument’s sake, we’ll say that
modern astronomy began around 1500
with the work of Nicolaus Copernicus
(www-groups.dcs.st-and.ac.uk/~history/
Mathematicians/Copernicus.html), and
we’ll equate that to 1995, when AOL
membership expanded from 2 million to
4.5 million subscribers.

Following our analogy, Alberto Savoia
(www.agitar.com/company/000009
.html), whom I’ve often referred to as
the father of modern performance
testing, could be equated to Coper-
nicus, who is often considered the
father of modern astronomy. Savoia,
like Copernicus, published several arti-
cles and papers that at their time were
considered “interesting, but funda-
mentally irrelevant.” Savoia’s papers,
published in the late ’90s, in my opin-
ion later became the foundation of
current performance testing theory
and practices.

However, from the time of Savoia’s
publications until very recently, the soft-
ware testing industry as a whole simply
hasn’t been ready to hear about, believe
in or pay for the inherent complexities of
high-quality performance testing. Most
of the industry has believed that if an

application was built well,
performance testing wasn’t
a necessity, in much the
same way that that function-
al testing was felt to be a
safety net for poor develop-
ment in the mid-’90s.

This is not entirely dif-
ferent from the time
between Copernicus and
Newton (www.newton.cam
.ac.uk/ newtlife.html), who

developed the mathematics and princi-
ples of physics to support Copernicus’s
writings. Possibly the acceptance of the
value of Savoia’s work is related to the
writings of such individuals as Connie
U. Smith (www.perfeng.com) and
Daniel Menascé (cs.gmu.edu/faculty
/MenasceHome.htm), who both pub-
lished widely read books, articles and
presentations on the subject between
1998 and 2002.

The major difference is that instead
of Copernicus’ 150 years, it took a
mere five years before the software
industry as a whole started viewing per-
formance testing as a good idea.
Unfortunately, it was still seen as an
optional set of tests that were “nice to
run” during the two-week period
immediately prior to going live.

“After all,” I heard executive after
executive say, “for what it would cost
me to buy or lease a tool and bring you
in for two weeks, I could double the
number of servers hosting the applica-
tion. I’d rather just save the money in
case I do have a performance problem.
Then I’ll just use those dollars to add
hardware.”

If you were an architect or a per-
formance tester around that time, I’m
sure you understand the frustration

caused by such statements. The frustra-
tion was due to the fact that once file
servers, application servers and data-
bases are added behind the Web server,
for example, the paradigm of “just add
another server” to improve perform-
ance—mostly valid for static graphics
and text-based Web sites—breaks
down. Unfortunately, it seems that not
everyone got that message.

So, even two years ago, perform-
ance testing was typically an add-on to
a project, not just part of how to build
quality software. I will grant that the
organizations that were doing per-
formance testing as an integral part of
their development process were start-
ing very early in the project, but many
of them still seemed to think that a per-
formance tester was just an automated
functional tester using a different tool.

For instance, it was generally
believed that record/playback was an
adequate method for creating per-
formance test scripts, and when some-
one mentioned that those scripts need-
ed to be edited by someone with a pro-
gramming background to produce reli-
able results, they were met with looks
of confusion and disbelief.

Further, it was popular when creat-
ing application workload models to
simply “pick the top x test cases that are
currently passing the automated func-
tional tests and just rewrite those in the
performance tool. That should be
good enough.”

Even more surprising in retrospect
was that the apparent best practice for
handling a performance issue seemed
to be: “Observe poor performance.
Enter defect. Defend tools and scripts
to developer. Defend tools and scripts
to lead developer. Defend tools and
scripts to project manager. Close defect
due to the belief that the results are
incorrect. Run the same test later on a
new build. Notice that the issue is
resolved. Ask the developer if he or she
changed anything. The developer
admits to finding and fixing something

A Good Idea
Whose Time
Has Come

Scott Barber

42 • Software Test & Performance JULY 2005

Scott Barber is the CTO at PerfTestPlus,
Inc. His specialty is context-driven perform-
ance testing and analysis for distributed
multiuser systems. Contact him at sbarber
@perftestplus.com.

PPeeaakk PPeerrffoorrmmaannccee

43 • Software Test & Performance JULY 2005

that could have effects like that…after
the defect was closed.” Sound familiar?

After about six years of trying to con-
vince software development teams that
accurate modeling of production users
really makes a difference in their
results; that starting performance test-
ing and test planning early on really
does pay off; that adding more hard-
ware actually solves only a minority of
performance problems; that neither
“fast” nor the “8-second rule” constitute
appropriate performance goals; and
that a performance tester who is a mid-
level everything and can interact effec-
tively with the developers adds value to
the team, I figured that I was in the
wrong business and took a reg-
ular 9-to-5 testing job.

I never lost my passion for
performance testing, though.
I did a little writing, took
some side gigs, even founded
a workshop where perform-
ance testers get together and
share ideas and methods for
handling particularly tricky
situations. Yet all of the sto-
ries, e-mails, forum postings
and complaints by everyday
Internet users kept demon-
strating that performance test-
ing was still not being taken
seriously enough.

I resigned my position as a
test manager today. I really had
planned to be a test manager for several
more years, but something has changed
in recent months. I’ve been hearing
questions like:

“We’re about to kick off a develop-
ment project; what are the perform-
ance testing tasks we should be think-
ing about right away?”

“I know we can’t just extrapolate
our response time and load values
from the test environment to the pro-
duction environment, so how do we
find out what the production environ-
ment can handle?”

“What can I show to the develop-
ment manager that will make him feel
better about the performance tester
and the developers working together?”

“When will we finally get some load-
generation tools that have a real IDE? I
just can’t write enough code in these

crippled languages to simulate my
users accurately enough!”

“Can you share with me your
approach to determining appropriate,
meaningful and testable performance
goals and requirements?”

I was pleasantly shocked.
Suddenly it seemed like the indus-

try had started putting the focus on
performance testing that for years it
has deserved. Does this mean that
we’ve reached the astronomical equiv-
alent of the early 1900s, when Albert
Einstein’s (www-gap.dcs.st-and.ac.uk/
~history/Mathematicians/Einstein
.html) theories changed the way we all
conceive light, gravity and other prin-

ciples that keep the planets in motion?
I believe we have.

All of that is to say that it is my belief
that folks are ready to hear and react
appropriately to the lessons we per-
formance testers have learned in the
past, and that we are ready to make the
kind of fantastic advances in perform-
ance testing that have been made in
astronomy over the past 60 years or so.
The performance testing tools that are
coming on the market this year have
finally taken many of these lessons
into account and are being designed
and marketed to accommodate not
only the “record/playback” testing
that is valuable at certain times, but
also the more complex testing that
requires reasonably heavy scripting
and direct interaction with the devel-
opment team.

With this increased awareness—
plus the growing education of man-
agers and executives about the issues
surrounding performance testing and
the new tools enabling testers to more
easily implement better tests—quality
performance testing is poised to
become a mainstream part of software
development.

In this column, it will be my intent to
share as many of the lessons that had
been put on hold as I can, in digestible
nuggets that I hope will be timely, valu-
able and applicable to performance
testers new and old, as well as to the man-
agers and executives they work for and
the developers they work with.

My hope is that I can pro-
vide you with resources that
you will read and hand to oth-
ers on your team with a sticky
note attached that says
“Please read, Re: yesterday’s
conversation about perform-
ance testing.” If I’m success-
ful, the information will pro-
vide you with the support
you’ve probably been looking
for to advance the state of per-
formance testing on your
team.

In the next issue we’ll start
digging into those lessons
learned—lessons about evalu-
ating and minimizing per-
formance-related risks; using

the tools at your disposal to improve
the quality and analysis of your results;
organizational and process barriers to
improving performance testing; and
the most critical skills for a perform-
ance tester to have.

In the meantime, I’d like you to
take the following from this column:
All indications are that folks are ready
to put quality performance testing into
their plans, budgets and processes. I
urge you to pull your own lessons
learned from the shelf, dust them off
and start sharing them. I’m willing to
wager that they will be much better
received now than they were when you
put them on the shelf in the first place.

So, I wonder: What will turn out to
be the performance testing equivalent
of the first person landing on the
Moon? ý

•
Suddenly it seems like the industry

has started putting the focus

on performance testing that

for years it has deserved.

•

