
Before I dig into this
month’s topic, I owe you a
book review. While I was
writing the August column
on Linux performance tun-
ing, I received a request to
review a new book titled
“Performance Tuning for
Linux Servers,” by Sandra
Johnson, Gerrit Huizenga
and Badari Pulavarty (IBM
Press, 2005). After reading
it, I offer the following as a
summary:

This book is a must-have for a novice-
to-midlevel *nix tuner/administrator, in
terms of technical content and informa-
tion, and a “nice-to-have” reference book
for more senior-level folks. It has a high-
er density of information that is directly
applicable to tuning Linux servers for
optimal multiuser application perform-
ance than any other book I have come
across that presents material in ways a
non-expert can directly apply.

Another positive but not-so-common
thing this book does is provide the
author’s reference material at the end of
each chapter, making it easy for readers
who want to know more to get the next
level of detail.

On the other hand, editorially this
book leaves something to be desired.
The chapter introductions are often
repetitive, and it’s obvious that the con-
tributing authors were solicited to write
their own sections independently of the
others. I draw this conclusion from the
way the presentation style changes from
section to section, and how I quickly
came to recognize the writing style of
certain contributors as I made my way
through the book.

To be honest, it reads more like a
well-organized collection of articles
than a book. Additionally, there are
enough editorial oversights and errors

(misspellings, etc.) to be
periodically annoying if
you are reading the book
from cover to cover—
which I don’t recommend.

However, none of these
minor criticisms keeps this
from being simply fantas-
tic reference material for
someone with at least
some basic knowledge of
Linux who has specific
tasks to accomplish.

* * *
Now back to our regularly scheduled
column. Recently I’ve read quite a num-
ber of articles, blogs, forum posts and e-
mails that discuss various topics that the
authors refer to as “agile performance
testing.” My first thought was, “Cool! It’s
about time!” But then I started to won-
der if this is really a revolution, or just a
realization of what has always been.

As I thought more about it, I first
tried to visualize what non-agile per-
formance testing looks like. For illustra-
tion purposes, let’s consider the V-
model. With this model, one would
establish performance requirements
and then create performance test cases
early in the project. Then, during the
main development effort, scripts would
be created, data and integration issues
would be dealt with, and then, during
the functional testing effort, all the
scripts would be finalized and issues
resolved so that performance testing
could launch smoothly when the appli-
cation and environment were deemed
functionally stable. Once functional sta-
bility is achieved, all of those perform-
ance test cases would be executed,
requirements would be listed as pass or
fail—with some supporting data in
defect reports—and the race would be
on to resolve those issues before the
looming go-live date. Sure, that’s a sim-

plified model, but I think it’s a reason-
able representation.

Remember, the V-model assumes
the following: Requirements are static
(and are actually required to pass prior
to go-live); testers detect and report
defects in writing; and then developers
research and resolve them. Testing
practices such as exploratory testing
(ET) are not generally used, and inter-
departmental communication is typi-
cally limited to documents, reports and
status meetings. Fundamentally, it’s as-
sumed that the testing phase will reveal
defects that are basically minor and/or
relatively easy to resolve.

The benefits of this non-agile
model, if done well, are well-defined
requirements, well-thought-out test
cases and well-developed scripts. This
front-end planning and preparation
leads to tests that demonstrate compli-
ance or non-compliance with the pre-
defined requirements under the condi-
tions defined by the test cases. Now,
while I am an avid supporter of both
agile development and context-driven
testing, I do support models such as
this in some situations. For instance,
I’ve seen this type of model work
exceptionally well in situations where
the goal of the testing was to determine
service-level agreement (SLA) compli-
ance, or when the goal is independent
validation and verification (IV&V) of
an application publisher’s or vendor’s
performance claims.

So how often are the goals of our
performance testing to determine SLA
compliance or to perform IV&V
against a publisher’s or vendor’s
claims? My experience says that an
answer of less than 10 percent of the
time is probably a safe enough bet to
be comical, but let’s use that figure for
now. What model, then, do the remain-
ing 90 percent of the performance test-
ing projects out there follow? I submit
that the following example is at least
fairly common.

It is a fairly well-known, yet under-

Revolution or
Realization?

Scott Barber

PPeeaakk PPeerrffoorrmmaannccee

Scott Barber is the CTO at PerfTestPlus,
Inc. His specialty is context-driven perform-
ance testing and analysis for distributed
multiuser systems. Contact him at sbarber
@perftestplus.com.

MONTH 2005 www.stpmag.com • 42

43 • Software Test & Performance MONTH 2004

documented, reality that application
performance requirements are rarely
well defined, testable and/or actually
required for an application to go live.
It is also commonly known among per-
formance testers that those perform-
ance requirements that were stated at
the beginning of the project quickly
become goals, with new requirements
forming as soon as failing perform-
ance test results start coming in—
which inevitably changes the perform-
ance scenarios to be executed.

To illustrate, consider this example
from a project I worked on some years
ago. When I reported back to the proj-
ect stakeholders that our tests were
showing 8-second response times
rather than the 5 seconds dictated by
project requirements, the response I
received was something along the
lines of, “We’re getting 8 seconds, not
5? Yeah, we can live with that, I just
pulled that number out of an article
anyway. I just need to be convinced
that the application will support 1,000
transactions during the first hour of
production. We’ve already paid for the
Super Bowl commercial time slot, you
know!”

Now let’s think for a moment about
what qualifies a process as “agile.” Signa-
tories of the Manifesto for Agile Software
Development (www.agilemanifesto.org)
profess the following:

“We are uncovering better ways of
developing software by doing it and
helping others do it. Through this work
we have come to value:

• Individuals and interactions over
processes and tools

• Working software over comprehen-
sive documentation

• Customer collaboration over con-
tract negotiation

• Responding to change over follow-
ing a plan

“That is, while there is value in the
items on the right, we value the items
on the left more.”

To my way of thinking, the scenario I
mentioned above easily fits into the
“Responding to change over following a
plan” category. The initial plan had
been to validate both the response time
and the application capacity require-
ments, but as the Super Bowl commer-

cial time slot drew closer, capacity
became the priority. One could argue
that what really happened wasn’t inten-
tionally agile, but rather represents
poor requirements collection, or possi-
bly poor schedule management, and
both are probably right—but does that
change the fact that a tester in a sce-
nario such as this will end up tossing the
plan over his or her shoulder to
respond to the change?

Or how about another well-known
reality of performance testing: that vir-
tually all performance test plans get
scrapped after the first significant per-
formance defect is uncov-
ered? Unlike functional
testing that, in theory, is
“simply” revealing bugs
that unit and integration
testing missed, virtually
everything that is re-
vealed during perform-
ance testing is a surprise
and could affect the
entire application all the
way back to fundamental
architectural and tech-
nology decisions.

Additionally, in the
vast majority of cases,
finding a functional de-
fect does not preclude a
continued search for
functional defects—but
oftentimes, the first sig-
nificant performance de-
fect halts additional per-
formance testing until it
can be resolved.

So what happens when
there is a crisis of this
magnitude on software development
projects? The plan goes out the win-
dow, and everyone is pulled onto this
new and frightening issue to resolve it
as quickly as possible—and the per-
formance tester is tasked with some-
thing to the effect of “Find every other
scenario you can that demonstrates this
issue. Find out what are the maximum
number of users that can use the sys-
tem before this happens, find out if it
recovers, find out what other activities
are affected....”

Is it just me, or does that sound
like exploratory testing to you? Remem-

bering that ET is defined as simultane-
ous learning, test design and test execu-
tion, I don’t see how you could define
this situation otherwise. Yes, one could
argue that if everything else were done
correctly, this situation wouldn’t occur,
but again, does that really matter when
just a few paragraphs ago we agreed that
these types of situations occur on 90 per-
cent (conservatively) of all performance
testing projects?

What I am saying comes down to
this: All of the successful performance
testers I have interacted with over the
years have used agile methods as regu-

lar and expected compo-
nents of their perform-
ance testing efforts. Many
don’t say it that way, but
they all do it. No matter
whether the development
effort follows the V-model,
XP or RUP, the perform-
ance testing effort almost
always “goes agile” as soon
as the first negative results
are reported.

Maybe this buzz about
agile performance testing
is really an indication that
performance testers are
accepting that their work
is often inherently agile by
virtue of their exposure to
agile testing methods in
general. Maybe perform-
ance testers are finding
that words and concepts
that are common in the
agile community better
reflect what they do.

And maybe, if that is
the case, there really is a growing aware-
ness of what performance testers actual-
ly do—and maybe, just maybe, this is
one small reason why the industry as a
whole suddenly seems ready to accept
that performance testing is a unique
task, requiring unique skills, and not
just “one more project management
box to check” before go-live, or as “an
additional duty for the top automated
functional tester.”

So is it revolution or realization? You
decide. As for me, I don’t care one way
or the other. I’m just glad that it is hap-
pening—whatever “it” is called. ý

•
All the successful

performance

testers I have

known have used

agile methods.

They don’t say it

that way, but

they all do it.

•

