The Shoulds And
Shouldn’ts Of

Software Testing

Lately I've become rather
fond of soving that sheuld
and shouldnt are the two
maost frightening words a
software tester hears while
testing. They probably
aren’t far down the list of
words that frighen man-
agers during status up-
dates either

Consider this example.
While doing some per-
formance testing for a bank, I noficed
what |ooked like a fascinating pattern
in the results with respect to response
ames. After appling some statistically
flimsy grouping (by rounding the
response times of the measured
objecits down to the nearest whole sec-
ond), I confirmed that the pattern
was, in fact, quite fascinating.

Reasonable Consistency
Response time results generally follow
one of just a few patterns. An in divid-
wal transction will typically display
response times that are reasonably
consistent thrmoughout the test, that
inaease hnearly or geometrically
throughout the test, or that increase
during peak volumes and return to
low-volume response times as the
volume decreases. FPretty much amy
other response time pattern for a
particular transaction s a good indica-
tton that something worth invest:
gating further is going on. In this
casc, the response times scemed 1o
oscllate unpr:ﬂicuhh’ in foursecond
increments.

As | imvestigated further, | found
several items worthy of note.

First, more than a third of the meas
ured objects retumed in less than four

MARCH 2006

seconds. As it turned out,
these objects were all
graphics, style sheets and
plain HTML ({text) ob
jects. Second, the majority
of the remaining objects
displayed response tmes
of four seconds—with a
few just over five sceconds.
Third, all of the objects
retuming in four or more
seconds contained data
that they retrieved from a remote,
hasted database. Last of all, every one
of these remaining objects retumed in
“fourand-a-little” seconds, “eight-and-
alittle” seconds and so on.

Pinpointing the Problem

As | explained this behavior to the
team {after defending my test, test
tool, analysis and competence), the
developers finally agreed to instu-
ment their code and systems to tme
stamp cach transaction as it entered
and &P:ﬂ.cd their arcas of respors -
bility. Running the test again, all of
them were happy to report that their
cud.c,-"s'_\-'!lrm wWas l"leDTldinﬂ na guar-
ter of a second or less—all except the
middleware developer He reported
that the requests were spending under
a tenth of a second in the middleware,
but that the time difference between
the outbound requests o the remote
database and the responses was, in
fact, showing the same four-second
lt:"P Plttﬂn.

The overwhelming
those findings by the managers and
developers was, “Oh, it must be the
database”—not surprising since the
main reason for the project in the first
Plaﬂ.- was o ulﬁm-altl_v re Plau:r thc o=

reaction to

sourced database. 1 wasn't as immedi
atcly convinced, however, and asked,
“Are we mure it's not something in
the network? The database is two fire-
walls. probably upvard woward a dozen
switches, hubs and proxies, and over
a thousand miles away.” Once the team
finished gawking at me and softly
chutlling their
response was, “That shouldn't be the
problem: we've never had rouble with
the network before.”

It took us three weeks to verify con-
clusively that the database was not the
problem. wo more weeks to convince
the network administrators o trace
the packets, one hour o conduct the
test, 15 minutes to analyze the results,
and less than five minutes to fix the
offending setting on the recenmtly
upgraded network applance. 5o, basi-
cally, the word showldn t cost the proj-
ect five weeks.

Of course, the hardest part for me
was biting back the urge o say, “I wld

you sol”

to one anather,

Sage Advice

In hie book “More Secets of Con-
sulting: the Consultant’s Tool Kit®
{Dorset House Publishing, 2001),
Jermy Weinberg offers memorable rules
and principles based on his years of
experience in the software indusiry.

For those of you whe may not be
aware, Weinberg has authored and co-
iu‘!’ll}rfd more b—Wkﬁ thlﬂ l care o
count—virtually all related o his 40
years of experience in the software
industry.

While it is true that many of his les
sons come from the point of view of
a conmiltant, every one of his books
holds valuable information that is
applicable to anyone in the software
industry { and most anv other industry
for that So don’t think
that his work is interesting only to con-
sultants. Weinberg's books and his
lessons that others have shared with
me have had, and continue to have, a

matier).

Scott Barber is the CTO at Perf Test Plus.
His specialty is comexi-driven performance
te=ting and analysis for distribused multi-
user systems. Contact him at sbarber
@perfrestplus.com.

www.stpmag.com = 11

significant mfluepce on how 1
approach software testing, my writing
and my values and prindples as a con-
sultant. If you've never read any of his
work. 1 highly recommend it.

If only Weinberg had gotien this
book out a vear sooner, and we had
read and paid atention 1o Chapter 3,
we might have avoided our fiveweek
delay.

The first three key points in
Chapter 3 are: “If they're absolutely sure
it's mot there, it's probably there”
“Don’t bother looking where everyone
is pointing,” and “Whenever you
believe that a subject has nothing for
you, it probably has something for
you.”

A mere two pages later, Weinberg
introduces a concept he calls Tullaby
words” that he summarizes this way:

“Later, I reflected on the d.ctpct
lesson underlying our discovery of all
these lullaby words. In effect, the
words discourage feedback by putting
both the speaker’s and the listener’s
mind to sleep. When feedback is dis-
couraged. the meaning of a statement
cannot be darified. If it's notclarified,
the statement can mean almost any-
thing—and that’s always the begin-
ning of trouble. If you want 1o avoid
such trouble, start converting those
lullaby words to alarm words—words
that wake you up to potential misun-
derstanding. rather than lulling you to
l]l:-rp.Ju“ do it

I'm guessing that you won't be sur-
prised that Weinberg includes should
as one of his lullaby words: the other
six are just soom, very omly anyshing
and all. While Weinberg's insights are
both brilliant and useful (as wsaal), 1
have to say that I think Weinberg
misecd a valuable opportunity 1o write
about why people use these lullaby
words—or maybe Weinberg and 1
just have had some very different
clients. What I have seen are members
of the dient’s team who use Jullaby
words very intentionally as a method
of all but begging the tester (or con-
sultant) net to look too hard in a par-
ticular place.

Its a sad but true fact that team
members often try to keep the testen
off their turf and thus keep them from

12 = Sohtware Test & Perdformance

finding problems that will put their
team under the microscope.

Sometimes this effort is an act of
sclipreservation brought on by organi-
zations or managers who are particular-
by harsh when enaal defects are taced
back to an individual; sometimes it's a
side effect of nontechnical testers try-
mg to tell developers how to do their
jobs; and other times it's sim ply organi
zational politics.

‘Whenever
you believe that a
subject has nothing
for you, it probably
has something

for you.’

In this case, politics s exactly what
led to a fiveeweek delay that was kicked
off by the use of the word shouwldn 't 1
later found out, months after phase 1
jand my offidal involvement with the
preject) was completed and in pro-
duction, that there had been a Ill:rng'
history of contention between the
development teams and the infiras truc-
ture teams in this organization. all ow-
ing the development teams to basical-
Iy dictate tasks to the infrastructure
team and blame them for any number
of defecs.

Making matters worse, a few
months before I came on board, a new
executive vice president who, among

ather things, made it exceptionally
difficult for the development teams
to get unscheduled assistance, was
placed in charge of the infrastructure
team. By all reporws, many of the
real and perceived infrasuucture
imues went away very shortly after
the change in management, but the
balance of power had taken a 180
degree tum.

The gawks, chuckles and “shouldn 't
that I recaved when 1 asked about the
network acmally meant, “We really
hopeit's the datmbase because we don't
want to fight with the infrastruciure
team again...cspecially after they
asurcd us that the nework wouldn't
be an Bsue for this project.” Now, if
only someone had wld me that from
the beginning. we could have created a
fairly simple test o prove that the
problem was berween the middleware
and the database, as opposed to spend-
ing weeks designing. creating, schedul-
ing. executing and analzing a test to
prove the problem was the database,
which would have quickly implicawed
the network by default.

In this particular case, at least, it was
much casier to disprove the dambase
theory of poor porformance than to
prove it

All in all, after the network fix, the
remainder of the performance testing
effort went well, and last 1 heard, the
application was still performing well.

Look Where You Least Expect

But that isn't the big lesson. The big
lesson that I've had to relearn dme
and time agaim since this project,
which is the first encounter I had with
lullaby words that 1 can recall. was that
no matter the reason behind the use
of showld or showldn't, as a wster, there
is only one single response that makes
sense every time: "1 undemstand that
shouldn't be the problem, but let’s test
it rfl"y truickhr Just to make sure. If
nothing else, it's worth being able o
document the wst and concusively
rule it oue”

S0 now whenever someone says,
“This shouldn't be the problem™ or
“This should work,” what 1 hear is
“Make sure #hisis something you don’t
forget 1o test.” E

