
Beyond
Performance
Testing

by:

R. Scott Barber

Part 13: Testing and Tuning Load Balancers
and Networks

In this installment of our final theme in this series, which I call “the
performance testing and tuning team,”I’ll discuss testing and tuning load
balancers and networks. These are generally pretty easy to test, but the
testing methods are fundamentally different from those discussed in Part 12
for the common tiers. Load balancers and networks shouldn’t actually be
causing performance problems or bottlenecks, but if they are, some
configuration changes will usually remedy the problem. Once again, this
article won’t turn you into an expert on these topics, but I hope it will help
you make a greater contribution to the testing and tuning team when faced
with bottlenecks in these areas.

So far, this is what we’ve covered in this series:

Part 1: Introduction

Part 2: A Performance Engineering Strategy

Part 3: How Fast Is Fast Enough?

Part 4: Accounting for User Abandonment

Part 5: Determining the Root Cause of Script Failures

Part 6: Interpreting Scatter Charts

Part 7: Identifying the Critical Failure or Bottleneck

Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution

Part 9: Pinpointing the Architectural Tier of the Failure or Bottleneck

Part 10: Creating a Test to Exploit the Failure or Bottleneck

Part 11: Collaborative Tuning

Part 12: Testing and Tuning Common Tiers

This article is intended for mid- to senior-level performance testers and
members of the development team who work closely with performance test
engineers. You should have read at least Parts 9 and 11 before reading this
article; it would be helpful to have read Parts 5, 6, 7, 8 and Part 10 as well.

Load Balancers
Load balancers are conceptually quite simple. They take the incoming load
of client requests and distribute that load across multiple server resources.
When configured correctly, a load balancer rarely causes a performance
problem. But my experience shows that load balancers are often not

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 1

http://www.perftestplus.com/resources/BPT1.pdf
http://www.perftestplus.com/resources/BPT12.pdf
http://www.perftestplus.com/resources/BPT11.pdf
http://www.perftestplus.com/resources/BPT8.pdf
http://www.perftestplus.com/resources/BPT7.pdf
http://www.perftestplus.com/resources/BPT6.pdf
http://www.perftestplus.com/resources/BPT5.pdf
http://www.perftestplus.com/resources/BPT10.pdf
http://www.perftestplus.com/resources/BPT11.pdf
http://www.perftestplus.com/resources/BPT9.pdf
http://www.perftestplus.com/resources/BPT10.pdf
http://www.perftestplus.com/resources/BPT9.pdf
http://www.perftestplus.com/resources/BPT8.pdf
http://www.perftestplus.com/articles/bpt7.pdf
http://www.perftestplus.com/resources/BPT6.pdf
http://www.perftestplus.com/resources/BPT5.pdf
http://www.perftestplus.com/resources/BPT4.pdf
http://www.perftestplus.com/resources/BPT3.pdf
http://www.perftestplus.com/resources/BPT2.pdf

configured correctly, and this results in very poor performance. The only way to ensure that a load
balancer is configured properly is to test it under load before it’s put into use in the production system.
The bottom line is that if the load balancer isn’t speeding up your site or increasing the volume it can
handle, it’s not doing its job properly and needs to be reconfigured.

Before I describe how to test load balancers, I’ll refresh your memory of the basic concepts behind load
balancing and load balancers.

A Refresher on Load Balancers

Let’s start by reviewing where the load balancer fits in the physical architecture. As you can see in
Figure 1, the load balancer is generally the last stop a request makes before reaching a Web server.

Figure 1: Typical physical architecture with load balancer

This diagram shows the load balancer as being separate from the firewall. Sometimes the same physical
device serves as any combination of firewall, proxy server, router, and/or load balancer. Sometimes the
load balancer is an actual hardware device with the software embedded (sometimes referred to as a
content switch), while other times the load balancer is just software installed on a machine of your
choosing.

On top of the different hardware and software configurations, there are many different ways that a load
balancer distributes load. The simplest is known as the round-robin method. With this method, the load
balancer simply takes each incoming request and sends it to the next Web server. For instance, if
Figure 1 represented our actual environment, the first request to reach the load balancer would be
directed to Web server 1, the second to server 2, the third to server 3, the fourth to server 4, and the
fifth back to server 1.

The round-robin form of load balancing completely ignores the concept of user sessions, so that during
a single session one user could be passing requests through several different Web servers. For an e-

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 2

commerce application, this won’t work. For these types of applications, on sites that use sessions, the
load balancer needs to be able to identify a particular user and keep that user pointed to the same Web
server throughout the entire session.

Even this doesn’t ensure a balanced load on each server. If somehow all of the users assigned to Web
server 1 spent hours using the application and all the other users just spent minutes, Web server 1 could
get overloaded while the other servers went underutilized. That’s why many load balancers have
dozens of load-balancing options and algorithms. They may balance by total traffic volume, they may
monitor the resource utilization on the Web server to decide which server is least utilized at the
moment the next request is received, or they may exercise any number of other possibilities.

For more information about a few currently popular hardware-based load balancers (including the
balancing algorithms they support), see the Network Computing site.

Testing

If you’ve modeled a realistic workload, your performance test is going to be the best indicator of
whether the load balancer is configured in the best possible way for your site. In fact, the only other
way to see if the load balancer is configured properly is to release it into production and monitor the
traffic.

In order to exercise the load balancer in a way that’s useful for determining if it’s configured properly,
you’ll need to make your virtual testers appear to be coming from unique IP addresses (since most load
balancers identify users by IP address). If the load balancer doesn’t recognize your virtual users as
being unique users, it’s not likely to balance the load properly. There are only two ways to make your
virtual testers appear to be coming from unique IP addresses: use a lot of agents or enable IP aliasing
through TestManager. Having lots of agents isn’t always practical, so that leaves IP aliasing.

In case you’re not familiar with it, IP aliasing allows many IP addresses to be assigned to the same
physical system. Every virtual tester can be assigned a different IP address to realistically emulate your
user community (although you don’t necessarily need one IP address per virtual user, as I’ll explain in
a minute). The requests generated by these virtual testers receive responses back from the Web server
with timing characteristics and validation recorded intact.

As explained by the TestManager Users Guide, if IP aliasing is enabled, the TestManager software on
each computer (local or agent) queries the system for all available IP addresses at the beginning of a
run. Each suite scheduled to run on that computer is assigned an IP address from that list, in round-
robin fashion. If a computer has more virtual testers than IP addresses, an IP address is assigned to
multiple virtual testers. If a computer has fewer virtual testers than IP addresses, some IP addresses
aren’t used. This approach optimizes the distribution of IP addresses regardless of the number of virtual
testers scheduled on a computer and frees you from having to match IP addresses to specific virtual
testers.

IP aliasing takes effect only if you’re running HTTP test scripts and your system administrator has
configured your system for IP aliasing. While this configuration may not be technically difficult, it
requires a knowledge of which IP addresses are both valid and available on the network you’re testing
from. For Windows NT, the administrator sets up the IP addresses on any particular computer with the
Settings > Control Panel > Network > Protocols > TCP/IP Protocol > Properties > Advanced > IP

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 3

http://www.networkcomputing.com/compareit/08sep03cit.html

Addresses > Add button. For UNIX, this can be done with the ifconfig command line utility.

But you don’t need to worry about any of that. All you need to do is to enable IP aliasing through
TestManager. If you’ve already created your suite, simply choose Suite > Edit Runtime from the menu
bar and check the box as shown in Figure 2.

Figure 2: Enabling IP aliasing through TestManager
To test a load balancer, you don’t necessarily need one IP address for every virtual tester, as mentioned
above, but I recommend having at least four times the number of IP addresses as you have Web servers
behind the load balancer. In the case of the environment depicted in Figure 1, I would recommend a
minimum of sixteen IP addresses (four IPs times four Web servers) via any combination of agents
and/or IP aliasing. Make certain you talk to the administrator in charge of configuring the load
balancer. That person will be better able to tell you what a realistic sampling size will be for your
environment.

Generally, you’ll want to test a load balancer under a fairly high load. It often makes sense to do some
performance testing and tuning on a single Web server (and associated back-end components) before
adding the load balancer and other “legs” of the load-balanced environment (see Figure 3) to ensure
that the rest of the system can handle the load that you’ll be applying to the load balancer. If the rest of
the application is unable to handle the load, you won’t be able to effectively determine whether
performance issues observed during the test are related to the load balancer or something else in the
system.

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 4

Figure 3: Single “leg” of a load-balanced environment (indicated by red lines)

Most teams believe they can stop testing after they’ve tested this single leg. They assume that if the
application server has more than half its resources still available and if the database and report servers
have more than 75% of their resources available when the Web server reaches its target load, adding
the rest of the servers in this environment with a load balancer will simply multiply that target load by
four. This is absolutely a faulty assumption. Just because one leg can handle a certain load doesn’t
mean that more legs will be able to handle more load. The actual environment must be tested. Even
under ideal conditions, adding legs rarely, if ever, results in simple multipliers of performance volume.

Remember when testing a load-balanced environment to have someone monitoring not only the load
balancer but also each Web server to ensure that it’s handling its share of the load. Most of this type of
testing isn’t about response time but rather about ensuring the load balancer is configured correctly and
determining the overall load the entire load-balanced system can handle. Ensure your testing and
monitoring reflect that focus.

Tuning

This section could probably be titled “Configuring” rather than “Tuning.” Since the majority of popular
load balancers today come embedded on their own hardware, there’s very little hardware tuning to be
done. It’s often the case, however, that additional configuring is required to ensure that all of the
available Web servers are receiving an even portion of the generated load. It may be that the type of
load that’s being generated requires a different balancing algorithm than the one the load balancer is
currently using. This is generally up to the administrator who handles the load balancer to decide. It’s
our job simply to provide an accurate load and to help monitor the Web servers to provide the
administrator the information necessary to make any configuration changes to improve the distribution
of the load.

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 5

Networks
You may remember that in Part 7 I asserted some rules for bottlenecks. One of those rules was: “The
bottleneck is more likely to be found in the hardware than in the network, but the network is easier to
check.” I felt confident in making this assertion for two reasons. First, you don’t need to have accurate
performance scripts or a working application to test the network, and second, virtually all networks
have an administrator and that administrator has tools to help you test the network.

Testing

The simplest way to start testing a network is to “ping” the remote server from your client. To use the
ping utility in Windows, simply go to the Start menu, choose Programs > Accessories > Command
Prompt, and type “ping [URL or IP to ping]” at the command line. Your results will look something
like this:
C:\WINDOWS>ping www.testsite.com

Pinging www.testsite.com [17.2.240.92] with 32 bytes of data:

Reply from 17.2.240.92: bytes=32 time<10ms TTl=63
Reply from 17.2.240.92: bytes=32 time=10ms TTl=63
Reply from 17.2.240.92: bytes=32 time<10ms TTl=63
Reply from 17.2.240.92: bytes=32 time<10ms TTl=63

Ping statistics for 17.2.240.92;
 Packets Sent = 4, Received = 4, Lost = 0 <0% loss>,
Approximate round trip times in milli-seconds:
 Minimum = 5ms, Maximum = 10ms, Average = 7ms
As you can see, the ping utility sent 32 bytes of data to www.testsite.com. This was done four times.
One time, the round trip took 10 milliseconds (ms); the other times, it took less, for an average round
trip time of 7 ms. In this case, we can see that the network between this client and www.testsite.com is
very fast. If this ping were to be slow, it would be time to contact your network administrator.

The other DOS utility that can be useful in testing networks is tracert (short for trace route). Using
tracert at the command line for our test site yielded the following results:
C:\WINDOWS>tracert www.testsite.com

Tracing route to www.testsite.com [17.2.240.92]
over a maximum of 30 hops:

 1 1 ms <10 ms 1 ms 10.215.3.1
 2 4 ms 2 ms 2 ms 129.71.200.254
 3 3 ms 4 ms 4 ms 129.71.200.1
 4 4 ms 4 ms 3 ms 129.71.254.1
 5 8 ms 8 ms 10 ms 207.68.7.18
 6 32 ms 34 ms 41 ms 209.158.31.249
 7 43 ms 37 ms 41 ms 205.171.24.85
 8 51 ms 58 ms 47 ms 205.171.5.233
 9 59 ms 58 ms 58 ms 205.171.30.10
10 56 ms 45 ms 43 ms 205.171.30.14
11 46 ms 51 ms 41 ms 38.7.135.1

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 6

http://www.perftestplus.com/resources/BPT7.pdf

Trace complete.
This trace shows that a request took 11 hops to get from my location to the destination. Adding the
duration of all these hops up, I come up with roughly 300 ms, or 0.3 seconds. Based on this
information, I can pretty safely assume that about a third of a second of the time required for each
request to reach its destination is due to network latency. That could really add up for a complex Web
page. Additionally, if this were a test that I did from inside the firewall, 11 would be an excessive
number of internal hops and would indicate a problem that should be addressed. You really don’t want
every HTTP request bouncing around on your internal network for 11 hops before getting to your Web
server!

Both of these simple tests were done under no load. It’s often useful to do these same tests during your
test execution to see what effect executing the test has on the results. If these tests yield odd results, or
if you’ve conducted these tests as well as other tests and can’t find the slowdown, it’s probably time to
get the network administrator involved. The network administrator will normally have tools to show
how much network bandwidth is being used, what the collision rate is, and what the utilization and
resource utilization rates are on network components (like routers). The admin should even be able to
“sniff” the network to get a clearer picture of what’s going on. Find out what tools the admin has
available and what kinds of load you should generate to best help the admin either track down
bottlenecks on the network or eliminate the network from the list of potential bottleneck suspects.

Tuning

Tuning the network or network components is almost entirely in the hands of the network
administrator. The best you can do is be at the admin’s disposal to execute tests to verify any changes
this person makes, or to develop a specific test to help pinpoint a problem. Even if you’re a networking
expert, it’s unlikely that you have the specific information about the network the system under test is
configured on to be able to help. From where we sit, it’s nearly impossible to tell if the slow spot we’re
encountering is a router, a routing table, a proxy server, a firewall, or an overutilized network segment.
Occasionally, the network can become congested, and that’s a major (and expensive) problem to fix.
Luckily, most network administrators are aware when the network is getting full so organizations can
plan in advance.

Summing It Up
I’ve shown you a few simple things you can do to determine whether the load balancer is correctly
configured and whether the network is causing any delays in response time. In both cases, making any
changes in response to your findings is up to the administrator involved. Your role is to accurately
model the load and monitor what goes on during your testing. As I’ve implied before, sometimes being
a helper is as good as being a hero.

Acknowledgments
• The original version of this article was written on commission for IBM Rational and can be found

on the IBM DeveloperWorks web site

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 7

http://www.ibm-developerworks.com/

About the Author
Scott Barber is the CTO of PerfTestPlus (www.PerfTestPlus.com) and Co-Founder of the Workshop on
Performance and Reliability (WOPR – www.performance-workshop.org). Scott's particular specialties
are testing and analyzing performance for complex systems, developing customized testing
methodologies, testing embedded systems, testing biometric identification and security systems, group
facilitation and authoring instructional or educational materials. In recognition of his standing as a
thought leading performance tester, Scott was invited to be a monthly columnist for Software Test and
Performance Magazine in addition to his regular contributions to this and other top software testing
print and on-line publications, is regularly invited to participate in industry advancing professional
workshops and to present at a wide variety of software development and testing venues. His
presentations are well received by industry and academic conferences, college classes, local user
groups and individual corporations. Scott is active in his personal mission of improving the state of
performance testing across the industry by collaborating with other industry authors, thought leaders
and expert practitioners as well as volunteering his time to establish and grow industry organizations.
 His tireless dedication to the advancement of software testing in general and specifically performance
testing is often referred to as a hobby in addition to a job due to the enjoyment he gains from his
efforts.

About PerfTestPlus
PerfTestPlus was founded on the concept of making software testing industry expertise and thought-
leadership available to organizations, large and small, who want to push their testing beyond "state-of-
the-practice" to "state-of-the-art." Our founders are dedicated to delivering expert level software-
testing-related services in a manner that is both ethical and cost-effective. PerfTestPlus enables
individual experts to deliver expert-level services to clients who value true expertise. Rather than
trying to find individuals to fit some pre-determined expertise or service offering, PerfTestPlus builds
its services around the expertise of its employees. What this means to you is that when you hire an
analyst, trainer, mentor or consultant through PerfTestPlus, what you get is someone who is passionate
about what you have hired them to do, someone who considers that task to be their specialty, someone
who is willing to stake their personal reputation on the quality of their work - not just the reputation of
a distant and "faceless" company.

Beyond Performance Testing - Part 13: Testing and Tuning Load Balancers and Networks
© PerfTestPlus, Inc. 2006 8

	Part 13: Testing and Tuning Load Balancers and Networks
	Load Balancers
	A Refresher on Load Balancers
	Testing
	Tuning

	Networks
	Testing

	The other DOS utility that can be useful in testing networks is tracert (short for trace route). Using tracert at the command line for our test site yielded the following results:
	Tuning
	Summing It Up

	I’ve shown you a few simple things you can do to determine whether the load balancer is correctly configured and whether the network is causing any delays in response time. In both cases, making any changes in response to your findings is up to the administrator involved. Your role is to accurately model the load and monitor what goes on during your testing. As I’ve implied before, sometimes being a helper is as good as being a hero.
	Acknowledgments
	About the Author
	About PerfTestPlus

