
1

 AST
 UPDATE

Smart Stuff for
Career Software Testers

Volume 1 Issue 2
December 2007

Workshop Debrief: WREST
About the first Workshop on Regulated
Software Testing

The Process of Exploration
Find the Best Bugs Fast with

Charter Based Testing

Experience Report
Achieving Usability

Through Testing

AST Education Update
Black Box Software Testing

Bugs in the Wild
iTunes & More

Testing Tips & Tricks
Creating a Code Boneyard

Right Click -> View Source
and Other Tips for

Performance Testing the
Front End

2

President’s Welcome

Welcome to the second issue of the AST
newsletter. We are pleased to welcome our new
editor, David Christiansen. David is the founder
and managing editor of TechDarkSide.com and is
a hobbyist writer and speaker. He can be reached
by email at dave@techdarkside.com. David is
looking for writers interested in columns and
features for the AST newsletter.

I’m also pleased to announce that Michael
Bolton has agreed to Chair the 2008 Conference
for the Association for Software Testing. Michael
is planning CAST 08 for Toronto Canada the week
of July 14th, 2008. I’m very pleased to announce
that our keynote speaker will be Jerry Weinberg.
For more information on the conference (call for
papers, details, and sponsorship information)
check the AssociationForSoftwareTesting.
org website for the latest information. If you
have any questions or would like to help with
the conference, you can contact Michael at
mb@developsense.com or conferences@
associationforsoftwaretesting.org.

Finally, I wanted to thank the hard work
of the students and instructors involved in the
AST Black Box Software Testing courses. We’ve
successfully completed two iterations of the BBST
– Foundations course, we are planning the first
offering of BBST - Bug Advocacy, and we have
an instructors program in place to help develop
instructors for future offerings. If you want to join
a course, you should send an email to member.
services@associationforsoftwaretesting.org to
be put on the notification list.

Thank you for your membership,
volunteerism, and support as we continue to
grow the organization. We are proud of what
we’ve done to date, and we look to continue to
grow both our membership base and the value
we offer our members in the coming year.

Sincerely,

Michael Kelly
President, Association for Software Testing
president@associationforsoftwaretesting.org

AST
UPDATE
Managing Editor
David Christiansen
dave@techdarkside.com

Technical Editor
Scott Barber
sbarber@perftestplus.com

A Publication of
The Association for
Software Testing

President
Michael Kelly

Vice President of
Operations and Executive
Director
Scott Barber

Vice President of
Publications
Cem Kaner

Vice President of
Conferences
Jon Bach

Treasurer
David Gilbert

Secretary
Dawn Haynes

Director at Large
Karen Johnson

Unless noted otherwise, all
content is distrubited under
the Creative Commons - No
Derivative Works License

3

From the Editor...

Welcome to the second issue of
the official newsletter of the As-
sociation for Software Testing. I
hope you noticed your newsletter’s
new name - AST Update, Smart Stuff
for Career Software Testers. Hope-
fully, this name conveys the intent
of the editorial staff of this pub-
lication, to give career testers
tools and resources that make them
better, smarter testers who help
promote the craft of testing as one
that requires intuition, skill, and
a highly engaged brain.

Please send your feedback and com-
ments to me - I’m very interested
in hearing how our content is re-
ceived.

Sincerely,

David Christiansen
 Managing Editor

Features
Right Click ->
View Source

by Scott Barber
7 Process of

Exploration
by David Christiansen
14

Departments

Debrief
Workshop on

Regulated Software Testing

6

Bugs in the Wild
including Untan-

gling the Rat’s Nest by
Danny Faught

4

Tools of the
Trade

Building a Code Boneyard
by Mike Kelly

10

BBST Update
by Cem Kaner

21

Experience
Report

Achieving Usability Through
Testing by David Rabinek

12

4

Bug Report
Pre-Conditions
- Apple ITunes Version 7.5.0.20

Reproduction
- Open ITunes
- Edit a song name (F2, or click direct-
ly)
- Place cursor at the beginning of song
name
- Press delete key multiple times

Bug Description
- After one press of delete song name
is no longer in edit mode. Subsequent
presses prompts the user to delete file.

Notes
- In dialog pop up default action (re-
move) is the most devastating one for
the end user.
- Making cancel default would be better
- May cause delays when user actually
wants to delete file.
- If user edits quickly there is a good
chance their files will be deleted

Link to Video

Bugs in the Wild
Making Your Music

Disappear

Adam White (www.adamk-
white.com) sent in this bug
report for a problem he found
in iTunes, along with a video
of the bug as well.

Both Adams received a free copy of Alter Ego, an
IT murder mystery, by David Christiansen for their
submissions.

Found your own bug in the wild? Send a brief write-
up with pictures to dave@techdarkside.com, subject
BITW. If we publish your bug, not only will you win
the admiration of your peers, but we’ll also send you
a free AST T-Shirt.

Clean Up Your Code!
Adam Goucher (www.adam.goucher.ca) posted this bug he
found on Air Canada’s website to his blog, Note the “TODO”
text box on the screen - some developer forgot to do his
laundry!

5

I often teach testers to look for
multiple bugs in the same
input field when they do
boundary testing. If a large

input triggers a failure, a larger
input may trigger a completely
different type of failure. A recent
testing effort gave me an extreme
example of this.

I was testing a numeric input field
that represented a length of time
in minutes. I fired up the perlclip
tool and quickly generated a string
of 100 “9”s. I like to start big. I
pasted the number into the field.
The application seemed okay
for a moment, but after moving
the focus to a different field and
moving the mouse around a bit,
I got an error complaining that
the number was too large for
an “Int32.” I clicked OK in the
error dialog, and another one
popped up just like it. I dismissed
that, and a few moments later,
I got yet another. I had to kill
the application using the Task
Manager. Great! That was bug
number 1.

When I find a bug like this, there’s
a good chance that I can try a
smaller value, and find a totally
different bug, less severe than the
first, but more likely for users to
encounter because the input is
more reasonable. Sure enough,

seem to work, though when
the application processes the
input, it changes the input
to a smaller number using a
modulo pattern.
The previous three
ranges repeat many times
consecutively, until...
Values of 2,147,483,648 and
above cause the repeating
Int32 error.

This is one of the most complex
bug isolation challenges I’ve ever
encountered. It certainly reinforced
the need to keep careful notes, and
to know exactly what inputs I’m
using for each test. Placing a book
on the keyboard and going out to
lunch doesn’t cut it.

Further reading:
A Bug Begets a Bu• g
How to Make your Bugs •
LonelyTips on Bug Isolation
Yet another email hyperlink •
bug
An Elusive Diagnosi• s

when I tried a smaller number,
I got an “Unhandled exception”
crash. Even better, when I restarted
the application, the crash repeated
immediately. I had to edit the
Windows registry before I could
use the application at all, even
after reinstalling it.

Next I wanted to find the boundary
between these two bugs. To my
surprise, I found some values in
between that seemed to work. And
then I found yet another error,
complaining that I couldn’t set
the value to a number less than 1,
even though the input was actually
much larger than 1. As I continued
to search for the lower boundary
for the “Int32” error, instead I
found more instances of the other
two errors. It took me a few more
hours of testing to discover a
pattern in the behavior.

Numbers below a certain
threshold (larger than anyone
would really need to enter) are
ok.
Numbers in a range of about
4,000,000 possibilities caused
the unhandled exception. The
lower boundary seems to drop
by 1 every minute.
The next 35,791,394 numbers
trigger the non-fatal error
about having a number less
than 1.
The next 31,664,026 numbers

Untangling the Rat’s Nest
by Danny R. Faught

6

Debrief

WREST-ling with Software
Testing in a Regulated Industry

WREST, the Workshop on
Regulated Software Testing is the
newest LAWST-style workshop
to be sponsored by AST. The
purpose of WREST is to share
ideas, generate new techniques,
and to provide a forum for people
who are interested in improving
the testing of regulated systems.
We’re defining regulated software
as software that is subject to
review by an internal or external
regulatory body.

WREST’s primary focus is on
better, more efficient ways of
testing regulated software systems.
This includes considering and
discussing any approach or
technique to testing regulated
software while still ensuring
successful completion of audits
both internal and external.

We anticipate holding WREST
workshops twice a year. Our
first workshop was held this past
November in Indianapolis. WREST
2 is scheduled for spring, 2008 in
Chicago. For more information,
see the WREST website at www.
wrestworkshop.com.

WREST Attendees
Back Row, from left: Mike
Goempel, Geordie Keitt, Kel-
vin Lim, David Christiansen,
co-founder John McConda,
and Scott Barber
Front Row, from left: Dana
Agnew, Crystal Bartlett, co-
founder Karen Johnson, Mike
Kelly, Cem Kaner, and (not
pictured) David Warren

“Our intention is to build
a distinct community for
software testers work-
ing in regulated environ-
ments. We’ve both had
experience working in
regulated and non-reg-
ulated environments and
we feel testers working in
regulated environments
have unique challenges.
We want to provide an
ongoing forum to ex-
change and collaborate
ideas. WREST is our way of
reaching out to testers in
regulated environments.”

Karen Johnson and John
McConda, cofounders of
WREST

7

Feature Article

Right Click -> View Source
And Other Tips for

Performance Testing the Front
End

Sc
ot

t
Ba

rb
er

I recently read High
Performance Web Sites:
Essential Knowledge for
Frontend Engineers by Steve

Souders, O’Reilly, 2007. The book
is sub-titled “14 Steps to Faster-
Loading Web Sites.” Before you
stop reading because this is a book
written for developers, consider the
following:
The research Souders presents
suggests that approximately
80-90% of a web page’s response
time results from front end design
decisions. My experience suggests
numbers more like 50-80%, but
most of my experience comes from
projects where existing multi-user
applications are being retro-fitted
with a web-based front end and/or
applications with significant back
end performance issues that I have
been called in to help find.
Virtually all of the tools, training,
articles, and conference talks
available to individuals who
test the performance of software
systems are heavily focused on the
back-end. So much so, in fact,
that most dismiss the front-end
aspects of system performance
as something not worth worrying
about, ostensibly because we can’t

control the end-user’s system.
In my experience, the front-end
design and development of web
sites is conducted with little to no
thought to performance, outside
of possibly reducing the size of
the graphics. Additionally, I’ve
never been made aware of a team
conducting peer review on the
HTML that generates the web page
on the client side, never been made
aware of unit tests on such code,
nor witnessed a tester deliberately
and proactively testing the HTML
for possible performance issues.
Put these things together, and what
you get is no one paying attention
to, or checking for, potential
performance improvements in the
part of the web page most likely
to contain the most opportunities
for the largest and cheapest
performance improvements.
Reading this book, I realized
that I frequently test for most
of these front end performance
issues without realizing it, that he
mentioned some I likely would
have never thought to test for,
that there were a few front end
performance issues mentioned in
the book I wouldn’t have even
known to test for, that it’s been a

mistake to not test for these items
(or call them out while teaching
testers) more deliberately, and that
these tests are low-cost, both in
terms of time and in terms of the
tools and resources required. In
fact, I frequently conduct most
of these tests during the first 15
minutes of performance testing
I conduct on a web site, though
I admit that in 15 minutes I can
generally only test a couple of
pages.

Throughout this article, I describe
how to conduct tests manually,
using load generation tools,
network protocol analyzers, helper
websites, and browser plug-ins.
I have validated the techniques

8

browser cache containing the
object in question. Determining
the number of requests a page
makes, and what it is requesting,
can be done in several ways.

No matter what method you use,
you will want to begin by either
clearing your browser cache or
requesting the page twice (one time
using ctrl -> refresh to override
the browser cache) to ensure that
you can view all of the requests.
Since the following methods only
collect actual requests, not clearing
or overriding the browser’s
cache could cause an incomplete
collection and lead you to think
that no stylesheets, scripts, images,
or multimedia content is being
requested, depending on a variety
of settings and conditions you may
or may not be aware of and/or have
any control over.

If you have access to a load 1.
generation tool or a network
protocol analyzer, you can
simply start recording, then
navigate to the page or pages of
interest. Search your recording
for “GET” statements, and
make a note of what objects are
being requested. Remember
that, with some tools, the
default view of the recorded
script may only contain the
base HTML request, not the
child requests (i.e. requests
for linked stylesheets, external
scripts, graphics, etc.), thus
requiring an additional step to
view all of the requests.

If you are testing in an 2.
environment where you are
permitted to install browser
plug-ins, you have several
options available to make this
task simple. The plug-ins I
recommend, depending on
which browser you use or wish

using the following free tools –
not free trials, but free-with-no-
strings-attached. If you work for
a company that doesn’t permit
the use of free tools, I’m certain
that a quick web search will help
you turn up dozens of alternatives
that will cost your organization
enough money for them to take
the tool seriously (for those of
you who think this is a joke, it’s
not. More than 50% of the teams I
consult with and individuals I train
report not being permitted to use
freeware, open source software,
shareware, or even time-limited
free trials on company machines or

networks).

With that, let’s
take a look at
some of the
tests you can
conduct with no
more training
than you’ll get
in this article,
tests that could
lead to dramatic
improvement in
end-user response
times without
requiring that you
look any deeper
than the web
server.

Number
of HTTP
Requests
Web pages are
not retrieved via a
single transaction.
Pages generally
include a single
request for the
HTML document,
one or more
requests for
stylesheets, one
or more requests
for external

scripts, and multiple requests for
graphics, multi-media content,
and third party content such as
advertisements. Even when many
of these objects are stored locally
in the browser’s cache, a request is
still frequently sent to the server to
determine if the object in the cache
is still “fresh.” What this means is
that each object used in rendering a
web page carries with it significant
potential for increased overhead,
and thus degraded performance
from an end-user perspective, even
when the client has a “primed”

Free Tools!
Free or Open Source Load Generators (a.k.a.
Performance Testing Tools)

JMeter (o http://jakarta.apache.org/jmeter/)

WebLoad (o http://www.webload.org/)

OpenSTA (o http://www.opensta.org/)

Free or Open Source Network Protocol Analyzer

Ethereal (o http://www.ethereal.com/)

Fiddler (o http://www.fiddlertool.com/)

Free Browser Plug-Ins

Firebug (o http://www.getfirebug.com/) with
YSlow (http://developer.yahoo.com/yslow/)
for Firefox

HttpWatch (o http://www.httpwatch.com) for
IE

Free Helper Websites

Web Page Analyzer - from Website o
Optimization: Free Website Performance
Tool and Web Page Speed Analysis (http://
www.websiteoptimization.com/services/
analyze/)

Gomez Instant Site Test (o http://www.gomez.
com/info_center/instant_test.php)

9
Continued on page 16

.css file), you
will also need
to download
each stylesheet
by manually
requesting
it from the
navigation bar
and searching
it for “url”
entries which
may be used to
request scripts,
images, or
multimedia
content.
(This is by
far the most
cumbersome
method, but
it will still
get you the

information).

Armed with your list of requests,
the first thing you are looking for is
volume—excessive requests slow
things down. There are several
indicators to look out for to decide
whether or not the requests you see
are excessive.

More than one request 1.
for an external stylesheet.
While it is sometimes a good
design decision to separate
page styles into more than
one external stylesheet, this is
not common and is certainly
not generally helpful in terms
of performance. Generally
speaking, maintaining more
than one external style sheet is
a good idea only if there is one
base stylesheet that applies to
many web pages and a second,
large, stylesheet with styles that
only apply to a few web pages.

More than one request 2.
for scripts from the same
domain. Even though there are

more sound reasons for linking
to multiple external scripts than
linking to multiple external
stylesheets, it still not common
for links to multiple external
scripts to result in better
performance than linking to a
single, consolidated external
script. For example, if the page
you are testing is a complex
data entry form, it may make
sense for the form validation
script to be separate from other
scripts that are common to all
pages. Doing so would reduce
the size of all pages except
the form, thus improving
performance on those pages,
even though the extra request
would degrade performance
slightly on the form page.
Regardless, more than one
external script is at least worth
asking about.

A lot of graphics.3. I can’t tell
you how many is “a lot,” but
I can tell you that currently,
IE7 and FireFox 2.x default
to 2 parallel downloads per
hostname (for HTTP/1.1
web pages, which most new
sites are). This means that,
no matter the size of your
images, the browser will only
download 2 at a time, and
that the next two won’t start
until both of the preceding
two are complete. This is
different from HTTP/1.0,
where FireFox defaulted to
8 parallel downloads per
hostname and IE varied by
version but never to fewer
than 2. The impact of this
change is that using the fewest
graphics of approximately the
same size tends to result in

to test against, are:

Firebug with YSlow for a.
Firefox.

HttpWatch for IE.b.

If you have no tools available, 3.
you still have several options:

Visit one of the helper web a.
sites listed earlier, type the
URL for the page you want
to test into the text box, and
push the “Submit” button.

In Firefox, right click on b.
the page, select Page Info,
then navigate to the Media
tab. Note that this method
does not reveal scripts and
stylesheets, but will still
show you requested graphics
and other multi-media
content.

In IE, right click on the c.
page and select View
Source. In this case, you
will need to search the code
for “link” and “img” tags.
Additionally, if you find links
to stylesheets (any link to a

10

data behind and to move on with
other activities instead. Ideas that
are no longer useful should be
abandoned in a way that allows
them to be recovered later when
a context in which they might be
useful emerges. This option for
later recovering abandoned ideas
produces the ability to refactor
an idea, using some or all of
the original idea or artifact in a
useful way. To be really good at
abandonment and recovery, you
need to reduce or eliminate the
maintenance costs of keeping your
ideas at your fingertips.

At this point, you might be asking
yourself, “What does all this have
to do with code; and where’s that
cool boneyard I was promised in
the title to this article?” Creating a
code boneyard is an abandonment
and recovery technique. It gives
you the ability to freely discard
code because you’ll know where to
look for it later. Overtime, the bits
of code (or bones) you discard will
start to accumulate and you’ll find
you have a rich set of examples to
draw on when you need to generate

Tools of the Trade

Building a Code Boneyard
by Mike Kelly

Great testers suffer from
overproduction – they
generate more ideas
than they could ever

reasonably use. It happens so often,
we have testing techniques and
approaches that are focused on
enabling you to make decisions
around which tests you should run
(because you can’t run them all)
and which tests you shouldn’t. If
you are new to testing and don’t yet
suffer the pain of overproduction,
we also have test techniques and
approaches that will help you come
up with more ideas for testing than
you could possibly use.

Why does this dynamic exist?
Why would we on one hand have
techniques designed to help us
generate more ideas than we could
possibly use and on the other hand
have techniques that help us narrow
the scope of our testing?

One problem testers face is that we
don’t know what we don’t know.
This causes us to error on the side
of producing too much in an effort
to compensate for the unknown;
and as part of that idea production
process we learn about what it is
we are testing. Once we sufficiently
understand the problem, or think
we sufficiently understand the
problem because we’ve produced
as many ideas as we possibly
can, we can then make informed
decisions around which tests might
be the right tests to run. This is one
of the main reasons overproduction
occurs.

People who are experts at
producing ideas have a wealth
of ideas, data, and experience
available to them; more than could
possibly be required. Testers who
are good at overproduction make
idea production cheap, quick,
and diversified so they don’t
worry about getting it right the
first time. Any one of their ideas
can be a bad idea or could miss
the mark and that’s ok because
they know they will get at least
one idea right and will abandon
the ones that don’t work. This
technique is commonly referred to
as “shotgunning”. Another familiar
example of overproduction is the
classic brainstorm. Neither of these
activities are wasteful if the effort
is relatively inexpensive and the
ideas sufficiently diversified.

Overproduction often results
in growth of the tester; having
produced something once you
can more easily produce it again,
making you more skilled as a result
of overproduction. For example,
each time I need to produce ideas
for performance testing I get a
little bit faster and my list grows a
little longer. That’s not accidental.
It’s because I’m systematic in
how I produce my ideas and I’m
systematic about how I abandon
and recover them.

Abandonment is another key
part of idea generation – without
it testers would be completely
overwhelmed. A tester who is
good at abandonment knows
when to stop an activity or leave

11

code quickly.

I currently have three separate
code boneyards that I work with.
At work my team has a simple
SharePoint list where we can
upload scripts (Ruby, SQL, VB,
etc...) that we think others might
find useful. I also carry a thumb
drive with me where I keep a
large pile of Ruby scripts and
code snippets (the thumb drive
keeps my boneyard mobile). And
finally, in my webmail account
I have a folder for code snippets
from mailing lists where I may
see something that I can’t apply
immediately, but I know I might
have a use for later.

Here is what’s common between
those three boneyards:

Each “pile” has a specific •
purpose (work code, personal
code, community code that
might be useful at some point,
but I haven’t really researched

or used yet).

You have access to it wherever •
you go. I can access SharePoint
anywhere on the office
network, the thumb drive is
always with me, and I can hit
webmail anywhere I have an
internet connection.

You can search it (thumb •
drive), index it (SharePoint), or
sort it (webmail). That is, you
can use tools to aid in rapid
recovery.

Here’s what you don’t want to •
think about as you build your
boneyard:

Don’t think about maintaining •
the code or worry about
compatibility issues.

Don’t limit your boneyard •
to working code - there can
be value in storing ideas that
didn’t work. Many times your
best code can be found in bones

created as you struggled with
a difficult problem you never
managed to completely solve.

Don’t think you always have •
to go back to the boneyard. I
used to keep reusing the same
bit of Ruby code that loaded
all the filenames in a directory
(and all it’s subdirectories) into
an array. One day I discovered
I could actually remember the
code enough to write it from
scratch.

A code boneyard is more than
a dumping ground for physical
resources like code that you can
abandon and recover. The very
act of going through the process
of idea generation and pruning
changes the tester - even if you
abandon an artifact, you still retain
in your mind the experiences of
creating it. You retain the learning
experience, the effort invested in
improving your position on the
learning curve. The next time you
need to create something similar
you are better at it and you will be
able to achieve the results you want
more quickly.

About the Author

Mike Kelly is currently a Software
Development Manager for a
Fortune 100 company. Mike also
writes and speaks about topics in
software testing. He is currently
the President for the Association
for Software Testing and is a
co-founder of the Indianapolis
Workshops on Software Testing,
a series of ongoing meetings on
topics in software testing, and a
co-host of the Workshop on Open
Certification for Software Testers.
You can find most of his articles
and blog on his website www.
MichaelDKelly.com.

Tactics for managing your ideas

Overproduction, abandonment, and recovery are tactics
for how to manage your ideas:

Overproducing ideas for better selection. Producing •	
many different speculative ideas and making speculative
experiments, more than you can elaborate upon in the
time you have. Examples are brainstorming, trial and
error, genetic algorithms, free market dynamics.
Abandoning ideas for faster progress. Letting go of •	
some ideas in order to focus and make progress with
other ones.
Recovering or reusing ideas. Revisiting your old ideas, •	
models, questions or conjectures; or discovering ideas
already made by someone else.

You can find more skills and tactics critical to the
professional exploration of technology here: http://www.
satisfice.com/articles/et-dynamics.pdf

12

Achieving Usability
Through Testing
by David Rabinek

Effective usability testing
can be a key driver in the
success or failure of a
software product -- where

an important element of project
success is almost always user
satisfaction.

As a card carrying member of the
context-driven school of software
testing, I strongly believe there is
no standard set of best practices for
any/all usability testing. Testers that
take an intellectual and analytical
approach to understanding one’s
context can create a customized
set of practices and artifacts that
will be effective in their particular
context.

In this article, I describe two
software development projects
where we took very different routes
to deliver effective usability with
very different results. It is my hope
that the lessons learned from these
projects will encourage testers to
think carefully and perhaps a little
differently about usability before
starting their next project.

First, I describe a project that
relied heavily on the business user/
stakeholder to identify usability
requirements and test them with
little structure or guidance from
either the project manager or the
test team. Second, I describe a

project that leverages the lessons
learned from the first project to
carefully plan and manage usability
testing as a method to achieve
effective usability.

Project #1

The functionality of this software
is to store daily business results
in a well-controlled database that
delivers standard (canned) reports
and ad-hoc reports generated by
business users.

The approach followed to deliver
usability was as follows:

Business requirements were
documented and signed off by all
stakeholders before development.
The document was very detailed
with respect to functionality
and workflow. The usability
requirements – performance,
UI intuitiveness and details
surrounding the ad-hoc reporting
requirement were far less specific.

Project stakeholders included full
time involvement of a senior-level
business analyst. This individual
was very knowledgeable about
the business operations, specific
workflow, and reports required of
this application. He was part of a
team using numerous spreadsheets
and manual processes to generate
what the system would ultimately

automate. He was an experienced
financial analyst familiar with
leveraging software applications,
databases and reports to accomplish
his day-to-day objectives. He had
experience building systems to
perform functions similar to the
one being built in this project.
He had software development
experience and understood the
typical roles and responsibilities
of various stakeholders. He had a
vocal, critical style and wouldn’t
hesitate to actively participate in
project work sessions and meetings
to share his thoughts and ideas.

The responsibilities of the business
user on this project included:

Development of detailed 1.
business requirements.
Generally the requirements
were excellent, but certain
portions of the specification
lacked detail, especially
usability attributes.
Performance requirements, look
and feel, and ad-hoc reporting
capability functionality
were particularly weak. The
development team had already
decided on the database
reporting tool they would
incorporate -- without seeking
user or tester involvement
in the decision -- so the
requirements simply stated that

13

the tool would be available to
the users. The developers were
confident it allowed for great
amount of reporting flexibility.

Participation in all weekly 2.
project status meetings during
which progress, plans and
problems were discussed. The
user provided and collected
feedback on a weekly basis
from his boss. Little was shared
with the larger project team
about these meetings.

Developers generated a design 3.
document that was reviewed by
all project stakeholders. Several
sessions were held to review
the proposed GUI, workflow
and functionality. All users
were involved in these design
review sessions which yielded
many improvements.

The lead user was given 4.
access to test versions of the
application during the system
test phase of the project. There
was no plan or structured
approach to his use of the
system. His feedback was
folded into the larger set of
defects discovered during
testing.

The user defined and executed 5.
UAT – which included running
all production use cases on
his hardware. His feedback
was given lots of attention and
issues were resolved promptly.

The user led the rollout of the 6.
software product. This included
a PowerPoint presentation
and demo for all users and
management of typical use
cases and reports.

Results of the project included:

Numerous
defects were
discovered
when the
production
version of the
software was
delivered to the
full set of users.
Significant
performance
issues appeared
– for example,
contention
with other
applications
on user’s
hardware.
Performance
issues appeared – for example,
database queries and reports were
very slow to generate.

The workflow of screens was
deemed overly complex – there
were too many steps and the order
was not intuitive. Calculations built
into the system were identified to
be more complex than desired –
simpler approaches were requested.
The GUI text was deemed to be
non-intuitive and unclear.

This system recorded key financial
risk statistics about our business
that were reported to senior
management daily. As such, the
software had many mechanisms
to protect the data, limit update
access and generate audit trails of
actions. The permissions and levels
of approval for various activities
were deemed overly complex,
cumbersome, and unnecessary.

The workflow for creating ad-
hoc reports was deemed to be
overly complex and required fairly
advanced developer skills -- which
most users didn’t have.

Most importantly, it was simply
not possible to extract results into a
spreadsheet. The lead business user
was repeatedly heard saying “it’s
not a database it’s a vault”. This
critical functionality was missing
from the product. Interestingly, it
was never requested in the business
requirements, but simply expected
to be delivered.

Lessons Learned:

What is intuitive to one person
is not necessarily intuitive to
another. In this project we relied
on feedback from one experienced
user to define intuitiveness for the
entire user team that included staff
with a wide range of experience
and background.

Satisfactory performance (in this
case: speed of the software) to one
person may not be satisfactory
performance to another.

Simple to one user may be complex
to other users. The single user
defined a series of equations that he

Continued on page 19

14

With only two
weeks of user
testing left on the
project schedule,

I was beginning to panic. User
testing should have started more
than a week earlier, but due to
unexpected problems with our
software deployment process,
we still hadn’t delivered a stable
build to the test environment.

I had already received one
extension to our delivery
schedule, and I certainly didn’t
want to ask for another. With
our deployment problems finally
fixed, the challenge would be to
complete testing in time to save
the production release schedule.

Like many project managers
in a similar bind, I faced a
time crunch. The testing team,
operating in three locations
across the country, had to

execute all the required test
scripts before the release could
be moved to production. These
scripts could be executed quickly
-- in about three days -- if there
weren’t any bugs. Critical bugs
would force us to patch the code
and start the test scripts all over
again. Making matters worse, we
had to do all the work manually:
Our shop had a plan to deploy
automated test capabilities, but
it would happen too late to help
this release.

Here’s what I proposed to my
testing team: We would open
with three straight days of
exploratory testing, find all
the bugs we could as rapidly
as possible, then start scripted
testing while we waited for the
new build. Once the new build
arrived, we would execute the
scripts one more time and pray
everything passed. It was a long

shot to get it all done in two
weeks, but I felt confident that if
we could find all the critical bugs
in the first three days, we could
pull it off.

The team had never tested this
way before, but they were eager
to try it. They were skilled
business users and several of
them had complained about
the constraints that scripted
testing put on them. They would
rather “just poke around in
the application” than follow
written scripts like witless
rats in a maze. Unfortunately,
our business partners required
written testing records, and I
knew that “three days poking
around” wouldn’t satisfy their
compliance needs. I felt we
could satisfy both groups by
providing a little structure to the
test effort, and I was right.

Three days into exploratory
testing, we had already found
several bugs that never would
have emerged using the planned
scripts, plus we found a few
more bugs that would have

Benefits of Exploratory Testing
Reduced need for detailed test planning•
Increased emphasis on application quality•
More effective use of knowledgeable •
testers
Reduced fatigue and boredom of testers•
Increased agility in testing as •
understanding of the problem space
evolved

Process of Exploration
Exploratory testing can help you find the best bugs in a
hurry

by David Christiansen

Feature Article

15

caused the scripts to fail. The
development team set about
fixing them and a new build was
delivered on day five. Three
days later, the scripted testing
was successfully completed, and
we were authorized to move the
application into production.

Everyone was satisfied with the
end result, and our test team
credited exploratory testing for
making the production release
date.

Testing by Instinct

How did exploratory testing
save my project? By removing
unnecessary constraints on the
team, it allowed testers to follow
their well-honed instincts to find
the most critical problems first.
The approach reflects the fact
that effective testing is more
about investigation than it is
about simple, scripted procedure.

Removing the constraints of
scripted testing had another
effect as well — one I’d heard
about but had never experienced
before — my testers felt more
energized and engaged in
testing. They enjoyed their work
more than ever before, and the
resulting energy boost propelled
them through testing at great
speed.

A highlight of this testing
effort was when one of the
testers proclaimed that we were
progressing at “ludicrous speed,”
a fantastic reference to the movie
“Spaceballs” that characterized
perfectly the progress we were
making.

Exploratory testing can also

benefit projects that aren’t
behind the eight ball. It’s an
approach to testing that every
project manager should be
prepared to use in the right
circumstances.

Mike Kelly, test manager for a
Fortune 100 financial services
company and president of
the Association for Software
Testing, says exploratory testing
can fill critical gaps in scripted
routines.

“There are many areas of
concern for a tester that are often
ignored in business requirements
or are simply difficult to
execute as scripted tests. For
example, look at the quality
criteria outlined in the Satisfice
Heuristic Test Strategy Model,”
Kelly says, rattling off a long
list of categories. “Capability,
reliability, usability, security,
scalability, performance,
installability, compatibility,
supportability, testability,
maintainability, portability,
localizability. That is most likely
an incomplete list.”

“It could be dangerous to assume
not only that your requirements
contain all of those criteria, but
also that all of your requirements
are written down and none of
them conflict with each other,”

Kelly warns.

Exploratory testing doesn’t
have to be paired with a scripted
testing program. You can put
an extremely high-quality
application into production
using nothing but exploratory
testing, and you wouldn’t be
the first project manager to do
it. A colleague of mine recently
did just that, in a corporate
IT department with stringent
compliance and traceability
requirements. How did he
demonstrate traceability? By
using charters to manage the
way they communicated about
testing.

Taking Up Charters

One method of managing your
exploratory testing efforts is
session-based test management.
This method makes use of
charters to structure the testers’
work. A charter, put simply, is an
objective for a test period, called
a session. Our test charters had
several features, listed below:

A title, briefly describing the •
objective of the test period

The feature or general area •
being tested (this ties the
charter back to requirements
in a general way)

Notes on activities performed •

“There are many areas of concern for a
tester that are often ignored in business
requirements or are simply difficult to

execute as scripted tests.”

Mike Kelly, President, Association for
Software Testing

16

the best performance. This
is counter to the notion that
smaller graphics are always
better. Combining several
small graphics into one or
two larger graphics frequently
improves performance.
There is, of course, a point of
diminishing returns. Graphic
size vs. number of graphics
is something that is worth
working closely with the front-
end designer, to test various
options in search of optimal
performance. A well respected
“rule-of-thumb” to guide
your decision making in these
matters urges caution if a page
contains more than 12 total
requests. This number is used
by Souders in his book, Andrew
B. King in Speed Up Your
Site: Web Site Optimization,
New Riders, 2003 and most

and bugs found

Test coverage, i.e. none, •
broad, narrow, deep, shallow,
complete, etc.

Status, i.e. not started, critical •
bugs might exist, critical
bugs exist, no critical bugs,
non-critical bugs might exist,
etc.

Name of the tester•

Exploratory testers create
charters as they go -- they don’t
have to be planned in advance.
Instead, they let their testing
skills and instincts guide them,
testing the areas they think are
most likely to lead to bugs. If
they’re testing accessibility,
for instance, and they notice
something that might be a
security problem, they can
use charters to change course
without losing track of what
they’ve accomplished.

At the point they observe a new
area of interest, exploratory
testers simply create a charter
for the area they’ve uncovered,
then decide whether to pursue
the new charter. If they opt to
pursue the new charter, they set
aside the previous charter (after
updating it with notes of their
progress) so it’s available to pick
up later. On the other hand, if
the tester decides to continue on
with the first charter, they have
the new charter ready once they
complete the current work.

Without charters, exploratory
testing is essentially just poking
around in the code and isn’t
adequate for most situations. The
discipline of creating charters

is a lightweight way to plan,
execute and measure exploratory
testing without having the
process get in the way.

In my case, we employed a
blend of exploratory and scripted
testing to make up for lost time
and deliver production code
ahead of deadline, but it’s clear
that this type of testing has real
value for many projects, not just
the ones that are running late.

About the Author
David Christiansen is a
project manager at a financial
services company, the author
of Technology Dark Side: A
Corporate IT Survival Guide and
the managing editor of Sapient
Testing, the official newsletter
of the Association for Software
Testing.

Continued from page 9

convincingly by Aaron Hopkins
in an article published on his
site titled “Optimizing Page
Load Time” (http://www.die.
net/musings/page_load_time/).

Sequence of HTTP Requests
Many of the same methods can be
used to determine the sequence of
the objects being requested when
a page loads. The exceptions are
the helper websites we discussed
previously and Firefox’s “Page
Info” screen, as these groups and
or sort requests by type and size to
highlight volume and size issues
rather than sequence issues. The
sequences you are most interested
in are:

Request stylesheets first.1. Web
pages will either not display at
all until stylesheets (.css) have
been downloaded or appear to
refresh themselves once the
stylesheet is retrieved. For
this reason, it is critical that
stylesheets are among the first
items requested following the
base HTML page.

Request scripts last (or at 2.
least late). Once a script is
requested, no other objects will
be requested until the script
has been completely received.
Additionally, browsers cease
displaying content while scripts
are downloading. This means
that any objects that complete
their download after the script
has been requested won’t be
displayed until the script has
been completely downloaded,
thus making the rendering of a
web page appear to stall. This
means that it’s highly desirable
for scripts to be requested
after the objects that are most
interesting to the end-user.
Remember, most end-users

17

perceive responsiveness based
on the time it takes for the
content they are interested in to
appear, rather than the time it
takes the entire page to load.

Whether you are viewing the
HTML source or captured requests,
what you are looking for is that
stylesheets are requested first and
scripts are requested either last or
at least very near last. There is
a common argument that scripts
controlling user interactions such as
image maps and roll-over objects
should be requested early so that
the user will have the “proper”
experience, even while the page is
downloading. In my experience,
however, a user is much more
likely to become frustrated or
abandon a website if it appears
to be stalled while downloading
than if a roll-over image or image
map isn’t enabled until the page
downloads completely.

Redirection and/or Hidden
Errors
You can use the same methods
you used to check for appropriate
request sequencing to check for
redirection (3xx series response
codes), client errors (4xx series
response codes), and server errors
(5xx series response codes). In this
case, the main indicators you are
looking for are the following:

Excessive 3xx series response 1.
codes. 3xx series codes
indicate that the request
was processed, but that the
browser must retrieve the
object from another location –
resulting in additional request/
response pairs. While there
are plenty of sound reasons
for the redirection of some
requests, it’s worth making
sure that redirection is being
done intentionally and for

good reason. For example,
redirecting from a removed
web page to its replacement,
or redirecting from an obvious
misspelling of a web page
to the correct page is a good
reason. Redirecting requests
for images because the image’s
parent directory has been
moved but no one has bothered
to update the link is probably
not a good reason to accept
the inherent performance
degradation associated with the
additional requests associated
with redirection.

Any 4xx series response 2.
codes. A 4xx series code
is returned when there is
a problem with the client
request. The most common
is 404, which indicates that
the requested object was not
found on the server. Generally
speaking, if the web page is
displaying and functioning
properly, but individual
requests are returning 4xx
codes, that indicates that the
page is simply requesting
unneeded objects and taking
extra time to do so.

Any 5xx series response 3.
codes. 5xx series codes
indicate that an error occurred
on the web server while trying
to fill the request. Any 5xx
series code should be of interest
to the development team.

I refer to these as hidden errors
because when they occur for
objects other than the base HTML
document they are frequently not
obvious or even visible to the
end-user. Sometimes seeing these
response codes is also indicative
of deeper errors, but, they all result
in requests that do not contribute
to the display or content of the

page and are frequently entirely
unnecessary.

HTTP Response Headers
To check HTTP response headers,
you will need to use a load
generation tool, network analyzer,
or one of the browser plug-ins. If
you don’t have any of those tools
available, another helper web
site might be of value. I suggest
Peter Forret’s “View and analyze
HTTP headers” page (http://web.
forret.com/tools/analyze.aspx),
where you can enter the URL
of a web page and the site will
retrieve a list of the HTTP headers
sent back by the web server, so
you can check page expiration
and caching settings. The details
about what parts of the response
are appropriate vs. unnecessarily
performance inefficient are highly
dependent on variables such as the
frequency with which the site and/
or objects change, the frequency
with which users of your site visit
the site, and the relative risk of
those users viewing stale content.
Nonetheless, the following items
are consistently worth inspecting:

Check for an appropriate 1.
Expires: entry. If the HTTP
response for an object does
not include an Expires: line,
every time a user requests a
page containing that object,
a request will be sent to the
server to determine whether
or not the cached version is
“fresh.” If you have objects
that are unlikely to change
frequently (for instance, the
company logo) you can avoid
the “freshness check” request
with a date/time in the Expires:
line that is far in the future.
Expires headers are most often
used with images, but they are

18

often also appropriate for other
components including scripts,
stylesheets, AJAX, and Flash
components. Look for objects
with no Expires: line and for
Expires: entries that seem
inappropriate to you.

Check for appropriate ETags.2.
Entity tags (ETags) are a
method of identification that
web servers and browsers use
to determine whether or not the
object cached on the client’s
machine matches the one on
the server. The challenge with
ETags is that they are generally
unique to a specific web server,
meaning that using them may
actually be detrimental if the
web site has multiple web
servers. If you know that the
web site uses a single web
server, ETags are probably
a good idea. If the web site
uses multiple servers, you will
want to inquire about whether
the multiple servers have been
accounted for, or recommend
that the ETags be removed.

Check other cache controls.3.
You may or may not observe
other entries following lines
such as Cache-Control:,
Last-Modified:, Pragma:, Set-
Cookie:, and Age:. If you do
observe those lines, ensure that
the entries make sense to you.
If you don’t observe those lines
and feel like they should be
there, bring it up to someone.

The bottom line is that you want
to check HTTP response headers
to determine whether or not the
web site has been configured
appropriately to take advantage
of browser caching on the client
side. Frequently, the only way
to determine the appropriateness

of these entries is to spend time
with administrators and architects
discussing both how the site is
used and how it has been designed,
specifically related to client
browser caching.

Source Code and Objects
Finally, if you haven’t done so
already, you’ll need to manually
examine the source of the HTML,
.css, scripts, graphics, and other
remaining objects. To date,
I have not found any specific
tools that save time over manual
inspection in enough situations to
recommend for these final front end
performance testing tasks, although
HTML, script, and graphics editors
appropriate to the web site are
generally useful. The final front
end performance testing tasks that I
recommend are:

Ensure that HTML source 1.
code does not included
embedded scripts and CSS
expressions. It is extremely
rare that performance is
improved by including
scripts and CSS elements or
expressions directly in the
HTML. The reason for this is
simple: the base HTML for a
web page is the part of the page
that is most frequently updated
and therefore least frequently
served from cache. Since the
HTML is so much more likely
to be downloaded every time, it
only makes sense to keep it as
small as is reasonable. Keeping
scripts and CSS elements
external to the HTML, and thus
cacheable, is virtually certain
to improve performance, on
average, over time, across the
users of the web site.

Ensure that styles and 2.
scripts are not duplicated.

In my experience, stylesheets
and script files are notorious
for containing duplicate
or overlapping content.
Sometimes content is
duplicated across separate files;
other times it is duplicated
within the same file. While
you may not want to spend the
time to do a complete review,
a quick scan of the source can
often reveal whether or not
there is significant overlap or
duplication.

Check for code 3.
minification. Believe it or
not, “minification,” at least
according to the Random House
Unabridged Dictionary, is a
valid English word meaning
“the act of minimizing.” With
regard to computer code,
it refers to condensing and
optimizing the code to perform
the desired function using the
fewest lines and/or characters
of code. While inspecting the
HTML source code, external
script files, and stylesheets,
you want to look for excessive
comments, white space, line
breaks, variable name length,
and other items that increase
file size.

Check the appropriateness 4.
of graphics’ size and
compression. It may seem
obvious, but many web
designers are still using
graphics in formats that have
unnecessarily large file sizes, in
sizes different than the height/
width they are to be displayed
in, and of a quality well in
excess of what is necessary
or reasonable for the purpose
of the web site they are being
displayed on. In general, .gif
formatted images compressed

19

to 64 or fewer colors are more
than adequate for most graphics
and thumbnails; .jpg formatted
images compressed to 256
or fewer colors are typically
adequate for photographs; and
it is rarely justifiable to use
HTML height/width properties
to shrink or stretch an image
rather than creating a new
image of the correct size.

In each of these cases, use common
sense as your guide. For example,
some web sites reduce all of
their file, directory, and variable
names to two or fewer characters
each as a matter of policy to
minimize file size. From a purely
performative perspective, this is
excellent; however, the additional
work required to document and/
or maintain the code makes this
practice completely unreasonable
for most web development efforts.
You will have to work with your
team to find the proper balance
between duplication/ minification/
compression and practicality.

Summary
This article describes several tests
that can be used to determine
if a web site is likely to exhibit
poor front end performance.
Identifying these areas of potential
performance improvement
could result in a 50% or greater
reduction in the user-perceived
response time of the web site. I
am confident that once you get
your tool box of applications,
plug-ins, and helper web sites
in place, and practice these tests
just a few times, you will be able
to scan a website for significant
offenders of each of these items
in less time than you just spent
reading this article. With such a
significant potential for dramatic
performance improvement, and

Continued from page 13
felt were a simple, intuitive way to
generate the set of required results.
A much simpler set was defined
by the larger set of users and
implemented.

“Easy to use” to one user may not
be easy to use to another. Relying
on a single user to define easy to
use is risky.

Don’t assume users want a tool
to automate the current business
workflow – analyzing the flow
and suggesting improvements as a
standard part of the project may not
only be appreciated, but expected.
Workflow is often defined by the
tools available to projects that
implement new tools need to take
advantage of the opportunity to
simplify workflow.

Don’t assume users’ lack of
engagement in requirements

development implies a lack
of interest in usability. Find
a mechanism to extract those
requirements that fits your context.

In the world of financial systems, it
is safe to assume users will always
want the capability to download
all details to EXCEL for further
analysis and reformatting of
reports.

Project #2

An application that loads portfolio
data and model parameters and
initiates batch runs that measure
risk. This system generated the
risk statistics stored in the database
descriped in project #1.

For this project, two approaches
were followed to achieve the
desired level of usability:

Developers worked directly 1.
with the user group, holding
numerous work sessions to
discuss the work flow and
functionality the system
would provide, developing
“prototypes” on a white board
in the Director’s office. This
information was recorded and
fleshed out in the business
requirements and software.

The test team and development 2.
team structured their plans so
that usability was tested first
– with a planned new build to
incorporate feedback – before
moving forward to functionality
and user acceptance testing.
In this manner, the initial
test release was treated as a
prototype, and the usability
test as a hands-on mechanism
to collect the usability
requirements.

The usability testing was staffed

such a small investment in time
and tools required, I see absolutely
no reason why any web site should
go live without these tests being
conducted.

About the Author
Scott Barber is the Chief
Technologist of PerfTestPlus,
Vice President and Executive
Director of the Association for
Software Testing, Co-founder of
the Workshop on Performance and
Reliability, and lead contributing
author of Performance Testing
Guidance for Web Applications.
Scott specializes in testing
and analyzing performance
for complex software systems,
training performance testers, and
Context-Driven testing. Scott is
an international keynote speaker
and contributor to various software
testing publications.

20

with business and test team
participants. The testers defined
specific step-by-step instructions
for every button and field on
the UI as well as every standard
use case so that usability testing
would be comprehensive and
therefore minimize the likelihood
that usability defects would be
identified later in the project. The
testers prepared a template for
users to record specific feedback on
every test.

The test team Director and
business team Director spent hours
defining what usability meant
for this software and the type of
feedback required to be provided
by business-testers. Usability was
defined as intuitive GUI text, easy
to use GUI layout and workflow
between screens. Usability also
included UI response time as well
as batch run performance – for all
standard and several non-standard
use cases.

A diverse team of business users
was engaged to conduct usability
tests. The business users included
users ranging from the experienced
to the inexperienced with this set of
tools, workflow and risk statistics.
It also included management-level
business users.

The usability tests were conducted
on each of the user’s computers
using production data at the time of
day when production activities are
conducted.

Usability tests were also conducted
for several non standard uses of the
system with wider tolerances for
usability such as performance and
ease.

A session was held to consolidate
feedback from all users, define

the solution, and set priorities
for development. Project teams
included in this session were the
entire set of business users as
well as management-level staff.
Developers and testers participated
to get clarification and express
issues.

Results of this usability test
included:

Lots of feedback was collected
during usability testing. It was
prioritized and addressed in a new
build that was retested by users to
confirm usability quality met their
expectations for the first release.

The users were more engaged in
the entire project, and felt stronger
ownership of the final product and
more invested in the success of
it. The users gained significantly
more appreciation for the benefits
of careful planning in the phases of
projects in general, and the testing
phase in particular. The system
delivered satisfactory performance,
defined as UI response time and
batch run time for all standard use
cases.

The system delivered satisfactory
intuitiveness in terms of the UI
screen content, work flow and
report content and labeling. The
UAT phase was completed faster
than planned due to user familiarity
achieved during the usability test
phase, reduced user questions, and
fewer user errors. Far fewer user/
operator errors occurred in the
early months of production because
of that same familiarity and the
quality of software’s usability.

Development and test teams
received rich feedback during
usability testing. Numerous early
insights into future release usability

requirements were revealed. As
a result of all stakeholders sitting
and discussing user’s feedback the
team came to understand the user’s
vision for the tool

Lessons learned from this
approach to usability testing
included:

Hands-on user testing of a
prototype can be a very effective
way to collect requirements for
usability. Provide the user some
tools, such as a plan (to ensure
completeness and timeliness) and
template for collecting feedback.

A carefully selected mix of users
(inexperienced, experienced, and
management-level) results in
richer feedback and reduces risks
inherent in taking feedback from a
limited set of users. A process for
consolidating and prioritizing this
large volume of feedback will be
required. It is useful for the process
to include all project stakeholders.

The initial project plan should
include a new build after usability
testing, and time for users to test
their usability defect fixes.

Heavy involvement by a wide
range of users early in the project
accelerated later phases, improved
their overall project engagement,
and provided useful vision to the
project team.

About the Author

Dave Rabinek has been involved
in software development, testing,
business analysis and project
management for 25 years, primarily
in Financial Service and Consulting
firms (Booz Allen Hamilton). His
education includes a BS Computer
Science and an MBA Finance.

21

Starting a New Educational Program in the
Association for Software Testing

by Cem Kaner, J.D., Ph.D.

and students would not be engaged enough with the
course to stay motivated. More would conflict with
the intense on-the-job workload of most testers. We
also decided that any course longer than a month was
probably too long for most of AST’s students.

Given the one-month time frame, our next question
was: What is the optimal amount of course content
for a one-month course?

The tradeoff is between coverage (how much is
supposedly taught) and depth of learning. Gerald
Weinberg once said that you can make a program meet
any other requirement—as long as it doesn’t have to
work. The same thing is true for teaching. You can
cover any amount of material in a course—as long as
the student doesn’t have to walk out knowing it.

For us, teaching isn’t just giving a lecture •	
and hoping that interested students will learn
something. Improving our teaching isn’t just
making our lectures better. Teaching happens when
the students actually engage with the course and
learn from it.
For us, teaching isn’t just helping people memorize •	
things or apply them to examples simpler than
almost anything they’ll see in the real world.
Teaching is about helping people learn things that
will be useful or interesting in their real (post-
course) life. That requires a much deeper level of
knowledge.
To help people achieve our instructional •	
objectives, we include work beyond the video-
based lectures. Coursework includes homework,
discussions, group projects, quizzes, and exams.
Students submit their own work, review the work
of at least two other students, commenting on
assignments and grading each other’s exams. We
expect detailed comments (and provide some
training) because people learn more if they try a
problem, see and critically think about other ways
to do it, then go back to their own work and reflect
on what they did.

In the Florida Tech courses, we taught roughly one
instructional unit per week. That is, one week might
cover domain testing, the next week was scenario

A year ago, AST joined Rebecca Fiedler’s and my
research proposal to the National Science Foundation
(NSF) to experiment with a new model for online
course design and an open source vision for creating a
sustainable instructional community. The project was
funded last fall, and so we (AST, Rebecca and I) have
started developing and offering free courses to our
members.

The project starts with a black box software testing
(BBST) course that Hung Quoc Nguyen, James Bach
and I developed for commercial instruction, which
I then adapted for academic use at Florida Tech. In
essence, AST is bringing a grown up version of that
course home, to its commercial roots.

The AST BBST series will be a set of about 20 fully
online short courses. So far, we have developed one
course, BBST Foundations, taught it twice, and had
excellent results.

The Courses
There are plenty of commercial courses on software
testing, available from talented teachers (including
several of the most active members of AST). As we
discussed this in AST Executive meetings, it was clear
that our goal had to be to create a compellingly better
learning experience—for students who had the time to
devote to it.

The challenge of time forced our first design question:
How much time should our students have to devote
to the course?

Online professional-development courses have
stunning dropout rates—often 90%. Even online
courses people have paid a lot of money to take
have huge dropout rates. One factor that influences
dropout rate is the quality of engagement between the
instructor and the students. Another factor is perceived
value of the course, relative to the workload. A third
factor is length—how long will this course last? A
course that runs too long has a high dropout rate.

Based on our reading of the literature and a bit of pilot
work (an online course for potential instructors), Dr.
Fiedler and I decided that the course should require
about 6-14 hours of work per week. Less than that

22

introduction to test oracles and oracle •	
heuristics;
introduction to test effort estimation and the •	
myth of “complete” testing;
 introduction to the concepts of misleading •	
metrics and measurement dysfunction, in the
context of assessing how close to complete
your particular testing effort has been.

Preparation also includes work on a variety of learning
skills that are important for success in online courses.

We’ve offered BBST Foundations twice. So far, we’ve
had students from Africa, Asia, Europe, New Zealand,
North America, and South America at all levels of
experience. We expect this diversity to be typical.

Students often work in groups, created by the
instructors. Our heuristic is to maximize diversity
(geography, industry, culture, gender, expertise),
making everyone work with people in significantly
different time zones, who spoke with significantly
different accents, and who approached problems in
interestingly different ways. Some of our students
haven’t yet faced projects like this in their jobs. Our
courses will help them prepare for those situations
(and give them good stories for their next job
interview.)

In terms of workload, we expect the typical student
to work 8 hours per week on a course. In practice,
there was a lot of variance. A few students reported
spending less than 4 hours per week, some spent
15. On average, the typical student worked about 12
hours per week on the BBST Foundations course. The
workload will (we hope) stay about the same in later
courses, though the content and expectations will get
harder.

For Further Reference
The full set of Florida Tech course materials is at www.
testingeducation.org/BBST. You are welcome to use
these materials as you develop your own courses.

As we wrote the instructional objectives for each
course, we had two classes of questions. (1) What do
we want students to learn? And (2) How well do we
want students to learn it? I wrote about the application
of instructional ideas on depth of learning to testing
courses on my blog, at:

Assessment Objectives. Part 1–Bloom’s Taxonom•	 y
Assessment Objectives. Part 2–Anderson & •	

testing, and so forth. We decided these were probably
the right size chunks for the AST courses.

Here’s the list of courses we plan to offer to AST
members for the AST BBST series, in the approximate
order we hope to create the classes:

Fundamental issues in software testing•	
Bug advocacy•	
Domain testing•	
Function testing•	
Scenario testing•	
Overall perspective on test design•	
Risk-based testing•	
Specification-based testing•	
Testing variables together (combination •	
testing)
Introduction to regression testing•	
Analyzing requirements for test documentation•	
Scripted testing•	
Exploratory testing•	
Measurement in software testing•	
Quality cost analysis•	
Introduction to GUI level regression testing: •	
Analyzing requirements for successful GUI
test automation
Introduction to high volume test automation•	

In addition, we hope to add courses from some other
instructors. Scott Barber, for example, is thinking
about how to fit courses on performance testing into
our structure.

We cannot promise that we will offer all of these
courses. This is a volunteer effort that will progress as
we find volunteers to develop and teach the courses.

The Initial Course: BBST Foundations
The core learning objective for BBST Foundations
is to prepare students for success in the later,
increasingly difficult, courses in the BBST series.

Preparation includes foundational content:
Overview of testing terminology, including •	
demonstrating the extent of honest, rational
controversy over many of the key terms and
concepts in the field;
introduction to the objectives of testing, •	
including tailoring objectives to the context of
a specific project;

23

Krathwohl’s (2001) update to Bloom’s taxonomy
Assessment Objectives. Part 3–Adapting the •	
Anderson & Krathwohl’s taxonomy for software
testing

Acknowledgements
This article is partially based on research that was
supported by NSF Grants EIA-0113539 ITR/SY+PE:
“Improving the Education of Software Testers” and
CCLI-0717613 “Adaptation & Implementation of an
Activity-Based Online or Hybrid Course in Software
Testing.” Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. The
NSF project includes several overlapping sub-projects
that use the BBST materials to reach several different

academic, commercial, and in-house professional
development audiences. If you or your organization
is interested in collaborating in this project, please
contact Cem Kaner.

Rebecca Fiedler designed the student survey and leads
the sub-project to create an Instructor’s Course and an
Instructor’s Manual for the BBST family of courses.
Dr. Fiedler is Assistant Professor of Education at St.
Mary-of-the-Woods College in Terre Haute, Indiana.

About the Author
Cem Kaner is Professor of Software Engineering at
Florida Institute of Technology and head of its Center
for Software Testing Education & Research. You can
reach him at kaner@kaner.com.

Student Reactions to the BBST Foundations Course
Jeff Fry, Pradeep Soundararajan and Louise Perold have posted blog entries describing
their experiences in the course.

Most students who stayed to the end passed the course, but it was a challenging one.
In the post-course survey (students spent about an hour giving us detailed, anonymous
feedback), students rated the difficulty and more importantly, the perceived value of
the course as follows (data combined across courses):

These results are better than I had hoped for and I don’t have confidence that we’ll
sustain them. Early adopters might to be more enthusiastic than later ones—only time
will tell.

Compared to the commercial courses that you have
taken, this course was:
• Much more difficult: 31%
• More difficult: 31%
• As difficult: 13%
• Less difficult: 0%
• Much less difficult: 0%
• Not applicable: 25%

Compared to the university courses that you have
taken, this course was:
• Much more difficult: 19%
• More difficult: 25%
• As difficult: 31%
• Less difficult: 6%
• Much less difficult: 0%
• Not applicable: 19%

Compared to the commercial courses that you have
taken, this course was:
• Much more valuable: 62%
• More valuable: 13%
• As valuable: 6%
• Less valuable: 0%
• Much less valuable: 0%
• Not applicable: 19%

Compared to the university courses that you have
taken, this course was:
• Much more valuable: 33%
• More valuable: 27%
• As valuable: 27%
• Less valuable: 0%
• Much less valuable: 0%
• Not applicable: 13%

24

CALL FOR PAPERS
The 3rd Annual Conference of the

Association of Software Testing (CAST)
2008

http://www.associationforsoftwaretesting.
org/CAST2008

Toronto, Ontario, Canada, July 14-16, 2008
Beyond the Boundaries: Interdisciplinary

Approaches to Software Testing
Keynote Presentation by Gerald M.

Weinberg

The Association for Software Testing is pleased
to announce its third annual conference (CAST
2008), to be held July 14-16. The meeting will
be held in Toronto, Canada, a city which features
enormous diversity in culture, businesses, educational
institutions, and the arts. Toronto is the perfect
location for a conference on this year’s theme:
“Beyond the Boundaries: Interdisciplinary
Approaches to Software Testing”.

Interdisciplinary approaches draw from diversified
branches of learning or practice, such that insights
can be drawn upon and synthesized to influence
a particular craft. The CAST 2008 Program
Committee is now seeking papers that explain
how one, two or more disciplines might assist
with software testing.

Examples could include ways in which statistics
and metrics combined with critical thinking can
help software testers interpret performance test
results; ways in which logical thinking combined
with document design and modeling help
testers better understand business requirements
and execute functional tests; or ways in which
research in human/computer interaction might
influence usability testing.

Apropos of this theme, the Association is
delighted to announce that the first of our keynote
speakers will be Gerald M. Weinberg, presenting
a talk entitled Lessons from Past to Carry into
the Future. Fifty years ago, in 1958, Jerry

established the very first separate software testing
group, to aid in producing life-critical software for
Project Mercury. Jerry will speak of many steps,
done and not yet done, needed to complete the task of
creating a true software testing profession.

Both academic research papers and industrial
experience reports are welcome. The following
(non-exclusive) list suggests topics of interest that
the Committee would consider highly suitable for
submission:

General systems (e.g. modeling, non-linearity, •	
complexity)

Mathematics (e.g. probability, statistics, •	
combinatorics / permutations, graphing,
metrics, equivalence partitioning)

Epistemology (e.g. logic, lateral thinking, •	
critical thinking, experiment design, decision

CAST 2008: Beyond the Boundaries

25

making)

Cognitive science (e.g. biases, •	
perception, descriptive decision making,
human factors, dynamics of heuristics,
learning)

Communication (e.g. rhetoric, document •	
design, writing)

Visualization (e.g. graphical •	
presentation of test results, display and
presentation of test data)

Interdisciplinary approaches to teaching •	
software testing

In addition to looking for papers that
demonstrate an interdisciplinary approach to
software testing, we’re looking for personal
experience reports that clearly demonstrate
skills and practices of seasoned software
testing professionals. We’ll be looking for
rich, diverse experiences and intriguing papers
that illuminate the theme. If you have hands-
on experience and a fascinating story to tell,
contact us and we will assist you in evolving
your tale so it will be ready to present at CAST.

CONFERENCE FORMAT

CAST is designed as a forum to stimulate
discussions leading to innovation in software
testing, and so is distinguished by significant
interaction among presenters and attendees. Papers
and experience reports accepted by the program
committee are challenged, debated, and discussed
by the conference attendees. We encourage and
facilitate conversation by building flexibility into the
schedule so that topics generating high energy can be
explored more deeply without adversely disrupting
the course of conference events. Trained facilitators
will ensure that discussion sessions are appropriately
structured and productive. Discussion sessions will
have a recorder, and transcripts or summaries of the
discussions will be made available to participants after
the conference.

SUBMISSIONS

CAST 2008, although not associate with ACM,
encourages authors to follow the ACM SIG
Proceedings style, freely available at http://www.acm.
org/sigs/publications/proceedings-templates.

We expect a typical submission to be between 4

to 6 pages long. All papers should be submitted
electronically in PDF format via email to: CFP@
associationforsoftwaretesting.org

Authors of accepted papers will receive
complimentary registration to CAST 2008. Papers will
be published in the conference proceedings. Authors
will also be invited to submit their papers for inclusion
in a future edition of the Journal of the Association of
Software Testers (JAST).

CONFERENCE CONTACT

For further information about CAST 2008, please
contact a member of the conference committee as
listed below:

Sponsorship: Scott Barber, executive.director@
associationforsoftwaretesting.org
General Conference Information: Michael Bolton,
cast2008(“at” symbol)michaelbolton.net
Program: CFP@associationforsoftwaretesting.org

CAST 2008

Important Dates

Monday Feb 4, 2008 : Deadline •	
for paper submission

Monday February 25, 2008 : •	
Notification of acceptance/
rejection to authors

Monday March 17, 2008 : •	
Submission of revised paper
integrating the reviewers’
comments

Friday April 4:, 2008 : End of •	
the second period of reviewing

Monday April 28, 2008 : Final •	
camera-ready papers due

July 14-16, 2008: Conference•	

26

A S T U P D A T E
eVoting SIG

The eVoting SIG was chartered to comment on the cur-
rent eVoting certification guidelines (Voluntary Voting
System Guidelines, VVSG), the first U.S. government
regulations to deal so extensively with software testing.
Our goal is to make it clear that the heavyweight, suf-
focating processes required by the VVSG will make it
impossible for testers to find software bugs. We expect
to catalog patterns of failures that will evade VVSG-
compliant testing, and report our findings and recom-
mendations to the Election Assistance Commission’s
Technical Guidelines Development Committee and the
IEEE SCC38 standards group for voting systems.

So far the SIG has attracted several members, a few
of whom are actively building the wiki infrastructure
to collect and refine our comments on the VVSG. We
have also started creating our failure mode taxonomy,
based on the model of an eVoting system that we have
in-house. If you would like to join the group, please
see the eVoting SIG web page (http://www.association-
forsoftwaretesting.org/drupal/sigs/evoting) for instruc-
tions. For more information on the VVSG: http://www.
eac.gov/vvsg/

New AST Web Site in Beta

AST is scheduled to promote a brand new web site
shortly before January 7, 2008, but you can get a sneak
peek at http://www.associationforsoftwaretesting.org/
drupal/. Contact Scott Barber(sbarber@perftestplus.
com) with comments or to volunteer to assist with port-
ing content to the new site.

AST Gear Available Now

Get your AST shirts, coffee
mugs, notebooks and hoodies
at AST’s CafePress Store.

Recent Peer Workshops

WREST

AST sponsored the first meeting of the Workshop on
Regulated Software Testing. WREST1 was hosted by
Karen Johnson and John McConda, facilitated by Mike
Goempel and held in Indianapolis on Nov. 16 and 17.
See Page 6 of this issue for more information.

STiFS

AST sponsored the 5th meeting of the Software Testing
in Financial Services Workshop (STiFS), which took
place on December 2nd and 3rd at Liquidnet Holdings,
Inc. (www.liquidnet.com) in New York. The theme
was “Getting Business Knowledge into the Heads
of Testers”. Facilitated by Scott Barber, STiFS5 ex-
plored the methods in which various kinds of “business
knowledge” are obtained and used by testers at finan-
cial firms. For more information about future STiFS
meetings, please see www.stifs.org or contact Bernie
Berger (bernie@associationforsoftwaretesting.org) or
Scott Barber (sbarber@perftestplus.com).

Upcoming Peer Workshops

The Workshop for Teaching Software Testing(WTST)
will be held in Melbourne, Florida this January. Look
for a debrief in the next issue.

Scott Barber and Cem Kaner are considering hosting
either the next installment of the Software Test Manag-
ers Roundtable(STMR), or possibly a new workshop,
in Melbourne, FL just before STAR East or just after.
If you are passionate about a topic for this meeting,
please contact them.

Doug Hoffman is considering reopening the origi-
nal LAWST workshops. The Los Altos Workshops
on Software Testing created the model on which the
AST-supported peer workshops are based. The origi-
nal founders were Cem Kaner and Drew Pritsker, who
were soon joined by Brian Lawrence III, then by Elisa-
beth Hendrickson. LAWST will consider any topic of
broad interest to the testing community, adding its best
value when the topic is (a) controversial or subject to a
lot of misinterpretation, and (b) focused into one or two
tight questions for purposes of discussion. The heuris-
tic for the makeup of LAWST is that 1/3 of the attend-
ees should be test managers, 1/3 test-related consul-
tants, and 1/3 be highly skilled individual contributors
(people who do testing for a living). It is traditional in
LAWST to include 1-2 people who are relatively inex-
perienced (a year or two, or students, but exceptionally
promising). If you live in the Bay Area and are interest-
ed in helping Doug organize and host the next LAWST,
please contact Doug or Cem Kaner. Note: LAWSTs are
funded primarily by the hosts. It is commonplace for a
LAWST organizer to spend $500 or more in unreim-
bursed expenses.

