
{YOUR LOGO} {Client Logo} 

 

 
 
 
 
 
 
 
 
 
 
 
 

PERFORMANCE ENGINEERING STRATEGY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prepared By {Name}, {Company}  
Date {Date} 
Document No. {Doc #} 
Version {version} 
Status {status} 
Next Step {Notes here} 

 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 3 of 24 
 

Revision History 
 

Date Version Description Author 

    

    

    

    

 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 4 of 24 
 

 
TABLE OF CONTENTS 
 
1 INTRODUCTION 6 

1.1 Description 6 
1.2 Purpose 6 
1.3 Scope 6 
1.4 Related Documents 7 

2 PERFORMANCE ACCEPTANCE CRITERIA 8 
2.1 Introduction 8 
2.2 Performance Criteria 8 

2.2.1 Requirements 8 
2.2.2 Goals 9 

2.3 Engagement Complete Criteria 9 
3 WORKLOAD DISTRIBUTION 11 

3.1 Introduction 11 
3.2 Workload Distribution for <application> 11 

4 SCRIPT DESCRIPTIONS 13 
4.1 Introduction 13 
4.2 <Script Name 1> Script Overview 14 

4.2.1 <Script Name 1> Script Measurements 14 
4.2.2 <Script Name 1> Script Think Times 14 
4.2.3 <Script Name 1> Script Data 14 

4.3 <Script Name 2> Overview 14 
5 TEST EXECUTION PLAN 15 

5.1 Introduction 15 
5.2 Evaluate System 16 

5.2.1 System Architecture (Test) 16 
5.2.2 System Architecture (Production) 16 

5.3 Develop Test Assets 16 
5.3.1 Engineering Strategy (Schedule) 17 

5.4 Execute Baseline/Benchmark Tests 18 
5.4.1 Baselines 18 
5.4.2 Benchmarks and Re-Benchmarks 18 

5.5 Analyze Results 19 
5.5.1 Evaluate Results 19 
5.5.2 Acceptance Criteria Met? 20 
5.5.3 Conclusive? 20 
5.5.4 Tune Now? 20 

5.6 Scheduled Tests 20 
5.6.1 User Experience Tests 20 
5.6.2 Common Tasks Tests 21 
5.6.3 Remote Location Tests 21 
5.6.4 Stability Tests 21 
5.6.5 Batch Baselines 22 
5.6.6 Production Validation Tests 22 

5.7 Identify Exploratory (Specialty) Tests 23 
5.7.1 Black Box Tests 23 
5.7.2 White Box Tests 23 

5.8 Tune 24 
5.9 Project Closeout 24 

6 RISKS 25 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 5 of 24 
 

6.1 Introduction 25 
6.2 Risk 1 Prioritizing mentoring vs. testing 25 

 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 6 of 24 
 

1 INTRODUCTION 

1.1 Description 
 
This Performance Engineering Strategy document defines the approach to testing the 
{name} system.  It briefly describes the methods and tools used by <Performance 
Engineer(s)> to validate {and/or tune} the performance of the system.   

1.2 Purpose 
 
The purpose of this document is to outline the approach that the Performance Engineering 
team will take to ensure that the Performance Acceptance Criteria is met.  Specifically, this 
document details the: 

• Performance Acceptance Criteria 
• Workload Distribution to be used to exercise and gather measurements from the 

application 
• Performance Testing schedule 
• Tests to be performed  
• Measurements to be collected 
• User patterns to be modeled to include user think times 
• Data and data management issues 

1.3 Scope 
This document will provide a strategy to carry out all Performance Engineering activities for 
the {name} system.  It will briefly discuss the resources required, including the toolset used 
to accomplish test execution, results analysis and application tuning.  It will cover the 
Performance Acceptance Criteria, explain the user community models to be tested, and 
describe the scripts and schedules to be developed in a narrative fashion.   
 
This document is only intended to address {list releases or builds � may be omitted of 
testing final release}, although it is strongly recommended that this strategy be followed for 
all future releases.   
 
This strategy doesn�t include functional testing, nor does it guarantee any specific 
performance results. 
 
The strategy defined in this document may be used for both scheduled and interim releases, 
however, interim releases may not allow for complete adherence to this test strategy.  The 
approach used for interim releases will be dependent upon both the criticality of the release 
and the completeness of the functionality included in the release.  

 
The primary objectives for this testing effort are to:  

• Validate that the Performance Acceptance Criteria are met by the system AND/OR 

• Identify and ensure that performance related defects are addressed prior to 
deployment. 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 7 of 24 
 

1.4 Related Documents 
 
The following documents are referenced in this document. 
 
Ref. Name (Document No.) Date 

1.  <Organization> Performance Engineering Methodology 

2.  Architecture doc (doc #) 

3.  Project plan (if applicable) 

4.  Requirements doc (if applicable) 

5.  SOW (if applicable) 

 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 8 of 24 
 

2 PERFORMANCE ACCEPTANCE CRITERIA 

2.1 Introduction 
 
Performance efforts always have two sets of criteria associated with them.  The first are 
performance criteria (requirements and goals), and the second are engagement completion 
criteria.  In the sections below, both types of criteria are explained in general and in specific 
detail for the <application> performance engineering effort.  The performance effort will be 
deemed complete when either all of the performance criteria are met, or any one of the 
engagement completion criteria is met. 

2.2 Performance Criteria 
 
Performance criteria are the specific target performance requirements and goals of the 
system under test.  In the case of the <application>, <Performance Team> and 
<stakeholders> have worked collaboratively through mutual experience, conversations and 
workshops to develop the criteria enumerated below.  The preferred result by both 
<Performance Team > and < stakeholders> of the performance engineering effort is to 
validate that the application meets all of these goals and requirements currently and/or tune 
the application until these goals are met.  If this is not possible, at least one of the 
engagement completion criteria from the next section must be met for overall performance 
acceptance. 
 
<The following examples indicate the type of acceptance criteria that should be listed in this 
section and at what level of detail it should be written.  The actual performance acceptance 
criteria for the project should be included in the format of the examples seen here: 
 
example 1 
 

2.2.1 Requirements 
Requirements are those criteria that must be met for the application to �go live� and 
become a production system. 
 
2.2.1.1 General Requirements 

1. System stable and responsive with 250 hourly users accessing <system> via 
Intranet in accordance with the User Community model.    

2. <system> exhibits not more than a 10 second response time (via Intranet) 90% of 
the time under a 250 hourly user load with less than 5% abandonment. 

3. <system> stable and responsive under spike loads. 
4. <system> stable and responsive under stress load. 
5. <system> stable and responsive under expected load during scheduled 

maintenance/batch processing. 
2.2.1.2 Time Sensitive/High Profile Activity Requirements 

1. Check Out Item - 3 seconds 
2. Check In Item - 3 seconds  

 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 9 of 24 
 

2.2.2 Goals 
Goals are those criteria that are desired for the application which are in some way different 
than the previously stated requirements.  Testing and tuning will continue until either all 
goals are met, or until time/money is at an end and the Requirements are met. 
 
2.2.2.1 General Goals 

1. System stable and responsive with 500 hourly users accessing <system> via 
Intranet in accordance with the User Community model.    

2. <system> exhibits not more than a 5 second response time (via Intranet) 85% of 
the time and not more than an 8 second response time 95% of the time under a 250 
hourly user load with less than 5% abandonment. 

3. All field validations exhibit not more than a 3 second response time (via Intranet) 
95% of the time under maximum expected user loads. 

 
2.2.2.2 Time Sensitive/High Profile Activity Goals 

1. Check Out Item � 1.5 seconds 
2. Check In Item � 1.5 seconds 

 
example 2 
The objectives of the Performance Engineering Effort are: 
 

• To validate the scalability of the technical architecture and operability on a shared 
platform (up to 1000 concurrent users). 

• To validate system performance of: 
o All user actions that require a page or screen to be loaded or refreshed will be 

fully displayed in 6 seconds 95% of the time when accessed over a 10 Mbs 
Lan while there is a 200 user load on the system. 

o To validate that the system does not exhibit any critical failures under stress 
(unrealistic load) 

o Identify and ensure that performance issues uncovered outside of the stated 
performance criteria are documented and/or addressed prior to deployment. 

example 3 
 
The objectives of the Performance Engineering Effort are: 
 

• To validate the scalability of the technical architecture and operability on a shared 
platform (up to 1000 concurrent users). 

• To validate system performance of the following average page load times over a 100 
Mbs Lan with the distribution of account sizes described later in this document.   

Screen Name Timer Name Page Load time, 
no Load 

Page Load w/ 200 
User Load 

Group Summary tmr_grp_sum 12 sec 20 sec 
Employee Listing tmr_emp_lst 12 sec 20 sec 
Search Results View tmr_srch_rslt 12 sec 20 sec 
Customer Adjustment Popup tmr_cust_adj 6 sec 10 sec 
Term Confirmation Popup tmr_term_conf 9 sec 15 sec 
 
> 

2.3 Engagement Complete Criteria 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 10 of 24
 

In cases where performance requirements or goals cannot be achieved due to situations 
outside of the control of the Performance Engineering Team, the performance effort will be 
considered complete when any of the following conditions are met: 
 
<This is an example of engagement completion criteria.  This should be used as an 
example.  The actual engagement acceptance criteria should be listed here in the format of 
the example below 
 
example 
 

• All bottlenecks preventing the application from achieving the performance criteria are 
determined to be outside Performance Engineering Team control/contract. 

• The pre-determined engagement end date is reached. 

• The Performance Engineering Team and stakeholders agree that the application 
performs acceptably, although some performance requirements or goals have not 
been achieved. 

> 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 11 of 24
 

3 WORKLOAD DISTRIBUTION 

3.1 Introduction 
 
A Workload Distribution is a representation of the functions performed by a user community 
on a system.  For example, during the course of a day on a retail-based website, most users 
are shopping, some are doing a search for a specific product, some are checking out and all 
this while a single administrator may be updating prices on products.   A Workload 
Distribution is based on a percentage of users performing a specific function over a given 
period of time.  Using the above example a Workload Distribution could be: shopping � 
83%, searching - 5%, checking out � 10% and administration - 2%.  
 
Performance engineering is separate from functional testing; therefore, it is not necessary 
to simulate all possible paths through the system.  Specific functions that are expected to 
draw the largest number of users are scripted to exercise the critical system components.  
Less vital functions that may not be used as heavily are scripted to provide a varying 
workload, creating a more realistic mix.  As the number of concurrent users grows, the load 
increase on the system will often expand exponentially; therefore, it is imperative to 
accurately simulate the expected workload of the system.  Experience shows that modeling 
80% of a user population provides accurate load tests. 
 
The Workload Distribution for a series of tests is represented in Rational Test Manger suites 
that include individual scripts.  One or more scripts are recorded to represent each unique 
function to be tested.  The suite defines the percentage of users that will execute each 
script as well as how users enter the site and how many times each function will be 
performed by each user. 
 

3.2 Workload Distribution for <application> 
 
The sections below describe, in detail, the workload distributions to be used for testing the 
<application>.  The diagram (figure 3.1) shows the overall workload distribution path.  The 
vertical dashed lines show the common start point for the scripts within the testing of the 
site.  One can see that a virtual user�s activity in the site does not necessarily depend on 
how the user got to the site and that each virtual user may exercise a unique combination 
of functionality based on the determined rate of frequency discussed below.   
 
The Workload Distribution percentages presented in this document were created in order to 
simulate actual user activity on the site.  These numbers however, may be modified or 
changed during the testing effort based on request from <stakeholders> in order to 
simulate alternate system load. 
 
<The following figure and section is an example of a sample Workload Distribution.  They 
should be used as an example and the activities and percentages should be changed to 
meet the specific Workload Distribution for the application under test. 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 12 of 24
 

On-Line Bookstore
Name Search (12%)

Fiction Books (8%)

Purchase (30%)Select Best Seller (20%)

Exit (10%)

Help (10%)

Review (25%)

Survey (5%)

Select Book
(40%)

Artist Search (10%)

Rock (7%)

Purchase (25%)Select Top Seller (18%)

Exit (10%)

Help (10%)

Review (15%)

Survey (5%)

Select CD
(35%)

Return User
(60%)

Create Profile
(40%)

Exit (25%)

Exit (30%)
Check Order
Status (15%)

Open Business Account (5%)

Manage Business
Account (5%) Exit (25%)

Home Page

EXA
MP
LE

 
 

Figure 3.1 � Overall Workload Distribution 
 

The Workload Distribution for <application> includes all of the functions to be executed 
during the performance testing effort.  The dashed vertical line represents common start 
and/or end parts for the scripts (described in section 4). > 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 13 of 24
 

4 SCRIPT DESCRIPTIONS 

4.1 Introduction 
 
Rational TestStudio uses scripts and suites to plan and simulate user activities on an 
application.  For the purpose of this document, a script is a block of code created to 
represent user activities.  For this engagement, a script refers to all of the activities 
necessary for a user to navigate a specific path through the application.  Scripts also include 
the code required to time the page load times, starting from a user-triggered event (i.e. 
clicking a button or link to request the next page) and ending when the page is fully 
displayed to the user.  This code is commonly known as a �timer�.  A scenario groups scripts 
together and assigns them certain properties, such as number of users to simulate, when to 
launch the individual scripts and whether or not to repeat them.   
 
Each script is designed to simulate a specific user activity as described in the following 
sections.  Every script is recorded with user wait times to simulate the time an actual user 
would spend on the page before moving to the next page.  These wait times are discussed 
in more detail in section 4 of this document. 
 
<The following examples show how the remainder of this section should appear.  The 
specific scripts that will be used for the performance effort should be detail here in the 
format of these examples: 
 
Scripts that access bills will access bills of all sizes.  Four different sizes of bills will be 
exercised; small (<50 pages) 25%, medium (51 - 200 pages) 50%, large (201-500 pages) 
20%, extra large (501+ pages) 5%. This ensures that variances in page load time due to 
data volume will be appropriately accounted for during measurement.  It will also ensure 
that the system is exercised realistically during multi-user tests. 
 
The pages marked with (*)�s in figure 3.1 are effected by file size.  These pages will be 
timed from page request until the page is rendered.  This is different than page load times.  
These pages are presented so as to ensure that users can begin viewing data as soon as the 
first row is returned, but continues presenting data until all rows are returned.  The time to 
present all the data for extremely large files may exceed 12 seconds, however, since the 
user will be viewing data while the rest is being presented, the timings for these pages stop 
when the first row of data is presented. 
 
Five scripts, representing user groups of user actions on the system, have been identified 
that will be used to both exercise the Workload Distribution defined above as well as collect 
the single user end-to-end response (page load) times required for this engagement.  Below 
are brief descriptions of each script as well as a page-by-page account of the measurements 
collected and data used by that script.   
 
It is critical to simulate the length of time a user spends viewing a page or entering data 
when creating a load test.  If these times are not simulated, the load test will simulate users 
navigating the site unrealistically fast, (view 10 pages in less than 5 seconds rather than 
about 5 min) which would yield artificially poor performance results.  Each script will have 
think times that vary based on expected viewing time and distribution. 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 14 of 24
 

4.2 <Script Name 1> Script Overview 
 
The view summary detail script starts where the login script leaves off, selects the view 
summary link then, based on the Workload Distribution in section 3.1, views one of the 
specific types of billing detail and logs out of the system. 
 

4.2.1 <Script Name 1> Script Measurements 
 
Describe all measurements collected by the script.  This is generally page load times, but 
may sometimes include individual command processing, or component metrics such as CPU 
utilization or Memory usage.  Include the name of each measurement and describe the 
meaning of the measurement 

4.2.2 <Script Name 1> Script Think Times 
 
Describe the length and variation of all of the think times that will be a part of the script 

4.2.3 <Script Name 1> Script Data  
 
Describe any data to be parameterized, the volume of data, and how any data consumption 
issues are to be handled 

4.3 <Script Name 2> Overview 
 
Repeat 4.2 until all scripts have been defined 
> 
 

 

 Page Timer Name Acceptance 
Criteria 

User Think 
Time 

1 Summary Detail tmr_summary 8 sec 15-45 sec 
(norm) 

2 Home Calling and 
Long D 

tmr_home_longd 8/12 sec 20-60 sec 
(linear) 

3 Total Minutes tmr_minutes 8/12 sec 10-70 sec 
(linear) 

4 Roaming Charges tmr_roaming 8/12 sec 15-35 sec 
(linear) 

5 Texting Charges tmr_texting 8/12 sec 12-42 sec 
(linear) 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 15 of 24
 

5 TEST EXECUTION PLAN 

5.1 Introduction 
 
Performance Engineering occurs in an iterative fashion.  During the initial stages of testing, 
tests and analysis continue until required tuning is identified.  Once required tuning is 
identified, the tuning takes place, then the application is re-benchmarked and tests are 
repeated incrementally until either the target goals are met, or further required tuning is 
identified.  In some cases additional tests will need to be developed and executed to assist 
developers/architects in correctly identifying and tuning bottlenecks.  This entire process is 
repeated until no further tuning is possible during the allotted timeframe, or both the 
<stakeholders> and <Performance Engineering Team> agree that further testing and 
analysis is not required at this time.  <Performance Engineering Team> has determined 
that, within the timeframe outlined above, one of the possible end states listed in sections 
2.2 and 2.3 will be achieved.  See figure 5.1 below for an illustration of the iterative testing 
process.   

 
Figure 5.1 � Performance Engineering Methodology Overview 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 16 of 24
 

 
There are seven aspects of Performance Engineering as depicted in Figure 5.1.  Each aspect 
has distinct activities.  Each of these aspects and activities should be at least evaluated for 
every project.  While there may be times when certain aspects and activities do not apply, 
one should always ensure that is a part of a decision, not an oversight.    
 
There are three categories of tests that include all of the specific test types that are 
normally performed on a system.  They are discussed in the three aspects titled 
Benchmarks, Scheduled Tests and Exploratory Tests.  Various combinations of the tests 
included in these aspects, coupled with a scientific approach to their execution, can 
ultimately unveil all detectable performance issues and bottlenecks in a system. 
 

5.2 Evaluate System 
The Evaluate System aspect is a detail-oriented phase of a Performance Engineering 
Engagement.  This aspect includes the following activities: 

• Determine System Functions (Sections 3 & 4) 
• Determine User Activities (Sections 3 & 4) 
• Determine System Architecture (Section 5) 
• Determine Acceptance Criteria (Section 2) 
• Validate Acceptance Criteria (Section 2) 
• Determine Usage Model (Sections 3 & 4) 
• Validate Usage Model (Sections 3 & 4) 
• Determine Potential Risks (Section 6) 

5.2.1 System Architecture (Test) 
 
The test environment consists of: 
Proxy -  <describe> 
Web Server - <describe> 
Appserver - <describe> 
DB server - <describe> 

5.2.2 System Architecture (Production) 
 
The Production environment is a shared environment consisting of: 
Load Balancer(s) - <describe> 
Proxy � <describe> 
Web Server(s) - <describe> 
Appserver(s) - <describe> 
Database - <describe> 
 
If/when critical bottlenecks are detected that cannot be resolved in a short period of time, 
<Performance Engineering Team> and <stakeholder>managers will work together to 
determine the appropriate way to solve the problem. 

5.3 Develop Test Assets 
The Develop Test Assets aspect of performance engineering covers three activities: 

• Develop Risk Mitigation Plan (Section 6) 
• Develop Test/Engineering Strategy (Section 5) 
• Develop Automated Test Scripts (Section 4) 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 17 of 24
 

 
These three items are all �living� items and will be updated throughout the engineering 
process.  It is important to make these assets as complete and correct as possible early in 
the project to increase overall project efficiency. 
 

5.3.1 Engineering Strategy (Schedule) 
 
Example: 
 
<The dates in this schedule are estimates and may be modified as the project proceeds.  
Task Ids 4 through 8 are sequential by module, but module testing is expected to overlap. 
 

ID Date Duration Activities Pre-Req 
1 TBD 1 week • Validate Requirements 

• Validate Usage Models 
• Validate Overall Strategy 

None 

2 TBD Unknown • Determine Test Environment 
• Determine Load Generation Environment 
• Determine Dates and locations for 

Environments 

None 

3 TBD 1 week • Install and configure Test Environment 
• Install and configure Load Generation 

Environment 
• Validate connectivity and functionality 
• Validate performance users and 

authentication is configured 

ID 2 

4 TBD 1 day • Record base script for login, logout and 
sample navigation (Common Tasks) 

ID 2,3 

5 TBD Unknown • Execute Common Tasks test at up to 100 
users 

• Evaluate results 
• Follow process in section 5.1 

ID 2,3,4 

6 TBD 2-4 hours 
(per 
module) 

• Record base scripts for module (may be done 
during systems testing) 

ID 1,2,3 

7  TBD 3-5 days 
(per 
module) 

• Edit base scripts for module to match usage 
model. 

• Validate edited scripts 

ID 
1,2,3,6 

8 TBD 5+ days 
(per 
module) 

• Execute tests up to max load by module 
• Evaluate results 
• Follow process in section 5.1 

ID 
1,2,3,4,5,

6,7 
9  TBD 1-2 weeks • Execute collective load tests up to 250 total 

users. 
• Evaluate Results 
• Follow process in section 5.1 

ID 
1,2,3,4,5,

6,7,8 

10 TBD 2 weeks • Execute Stability tests 
• Evaluate Results 
• Follow process in section 5.1 

ID 
1,2,3,4,5,
6,7,8,9 

11 TBD 1 week • Revalidate last successful tests in Production ID 
1,2,3,4,5,
6,7,8,9 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 18 of 24
 

12  TBD Unknown • Tune Unknown 
13  TBD Continual • Update Strategy 

• Create and Update Results Document 
ID 1 

> 

5.4 Execute Baseline/Benchmark Tests 
The Execute Baseline and Benchmark Tests aspect is geared toward executing light load 
scenarios are that are used to validate the correctness of the automated test scripts, 
identify obvious performance issues early in the testing cycle, and provide a basis of 
comparison for future tests.  The activities included in this aspect of performance 
engineering are: 

• Baseline Individual Scripts 
• Create an Initial Benchmark 
• Re-Benchmark after Tuning 

 
For the <application>, both baselines and benchmarks will be used. 

5.4.1 Baselines 
 
Baseline results represent each script run individually over multiple iterations. Baselines are 
used primarily to validate that the scripts have been developed correctly.  Occasionally, 
baseline tests will reveal performance problems that should be addressed immediately.  All 
baselines are executed a minimum of 25 times. All reported times are statistical calculations 
(90th Percentile) of all 25 (or more) iterations.  This eliminates the possibility of a statistical 
outlier skewing the result set.  Each test execution run is separated by at least a minute, 
and every user wait time (time between user interactions with the system) will be exactly 8 
seconds to ensure baseline tests are identical.  For these tests all client side caching must 
be disabled, and each page must be pre-compiled.  It is recommended that a method be put 
in place to pre-compile all pages automatically every time the test/production system is 
restarted.  Baselines are in no way intended to represent actual users. 
 
If after 25 or more iterations have been executed, the standard deviation among the results 
is high (more than half of the average time for that measurement), research may be 
required to determine the reason, as baseline tests should provide statistically similar 
results each time they are executed.  If a baseline is found to be significantly slow, tuning 
may need to occur before subsequent tests are executed. 
 

5.4.2 Benchmarks and Re-Benchmarks 

A benchmark, or light load, scenario is generally a small community of users compared to 
the target load.  This community of users must be large enough to represent a reasonable 
sample of the entire user community.  Executing these tests ensures that the testing 
environment behaves as expected under light load before more demanding testing begins.  

Additionally, the results of these tests are used as a benchmark to compare with all future 
tests results. Performance results obtained under the benchmark load should meet or 
exceed all indicated performance requirements; otherwise tuning must begin with the 
benchmark load.  Assuming no performance problems are noticed during this scenario, the 
results obtained can be used as "best case" results. These results indicate how the system 
performs when it is not under noticeable stress, but is still performing all required functions, 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 19 of 24
 

thus allowing conclusions to be drawn about the performance of the system during the 
higher load tests. 
 
The <application>will be benchmarked, by module, in the environment described in section 
5.2.  This benchmark is intended to provide a basis of comparison for future testing.  Tuning 
may occur during this benchmarking effort if critical bottlenecks are detected.  Once any 
required tuning is complete, end-to-end page load times will be collected for each timer 
indicated in section 4 of this document.   
 
Each module will be re-benchmarked each time an iteration of either tuning or development 
has been completed on a module.  This ensures that there is always a known valid point of 
comparison for all scheduled tests.  The Benchmark load for all modules will be 10 users, 
entering the system randomly over a 5-minute period and performing the tasks outlined in 
section 4 for either one hour or 5 complete iterations at a realistic user�s pace. 
 
If benchmark results do not meet the stated performance acceptance criteria, <Performance 
Engineering Team> and <stakeholder>will work together to either resolve the bottlenecks 
or revise the test strategy.  Continuing on to the next phase of testing without fixing the 
performance issues will not add value to the project. 
 

5.5 Analyze Results 
The Analyze Results aspect is where the decisions are made about how to continue with the 
engineering effort.  All of the remaining aspects are reached as a result of the decisions 
made in the Analyze results aspect.  The activities included in this aspect of performance 
engineering are: 

• Evaluate Results 
• Determine if Acceptance Criteria is Met 
• Determine of the Test is Conclusive 
• Determine if Tuning is Required 

 
Each test execution, regardless of type, must be analyzed to identify obvious or potential 
performance issues and/or the effects of the tuning effort.  This analysis may or may not 
require formal reporting.  At a minimum, notes should be kept and results saved, even for 
tests that are determined to be invalid.  Analysis is often more of an art than a science.  
Testers, developers and architects should all be involved in the analysis process, since the 
results of the analysis drive the tuning effort. 

5.5.1 Evaluate Results 
Evaluating results is where the art part of Performance Engineering comes in.  There is no 
single correct way to evaluate all of the data that results from a performance test execution.  
In general, though, evaluation is comparing to previous tests, finding and analyzing 
patterns, and applying past experiences.  Some specific areas of evaluation for this project 
are: 
<Example: 

• End-to-End response time (user experience) 
• Weblogic web server response, configuration and tuning 
• User authentication response, configuration and tuning (LDAP) 
• <stakeholder>network response from various relevant geographic locations 
• Tuxedo application server response, configuration and tuning 
• Oracle database server response, configuration and tuning 
• <Package Application> specific response and configuration 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 20 of 24
 

• Batch process response and efficiency 
> 

5.5.2 Acceptance Criteria Met? 
Determining if the acceptance criteria has been achieved is often the easiest determination 
made during a performance engineering engagement.  This activity is simply comparing the 
results from the most recent test, or suite of tests, to the acceptance criteria.  If all of the 
results meet or exceed the criteria, engineering is complete.  Move on to the Complete 
Engagement Aspect.  If not, continue evaluating results. 

5.5.3 Conclusive? 
Determining if a particular test or suite of tests is conclusive is often challenging.  Most 
generally, if the results do not meet the acceptance criteria, you can�t figure out what is 
causing the poor performance and the test results are reproducible, the test is probably 
inconclusive.  In the case of an inconclusive test, move on to the Exploratory Test Needed 
aspect.  Otherwise, continue evaluating the results. 

5.5.4 Tune Now? 
If you get this far, there is either a detected performance issue with the system, or more 
tests need to be conducted to validate compliance with additional acceptance criteria.  If all 
the tests that have been conducted so far have met their associated acceptance criteria, but 
there are more criteria to be tested, move on to the Scheduled Tests aspect.  If this is not 
the case, there are two options remaining.  1) re-execute the last test to see if the results 
are reproducible or 2) move on to the Tune aspect. 
 

5.6 Scheduled Tests 
 
The Execute Scheduled Tests aspect includes those activities that are mandatory to validate 
the performance of the system.  These tests need to be executed even if no performance 
issues are detected and no tuning is required.  There are only two activities that can be 
conducted in this aspect.  They are 

• Execute User Experience Tests 
• Execute Stability Tests 
• Execute Production Validation Tests 

 
All of the tests described below are considered to be Scheduled tests no matter how many 
times they are executed due to development or tuning iterations. 

5.6.1 User Experience Tests 
 
User Experience Tests constitute what are considered to be expected real-world loads, from 
best case to worst case. Applying less than the expected worst-case load is useful in 
identifying major failings in a system, but does so in a way that doesn't highlight many of 
the more minor failings, allowing an easier analysis of results. When the load is equivalent 
to the expected real-world worst-case load, actual performance of the system can be 
measured, and associated problems can be clearly identified. Executing Load Tests before 
moving to other types of testing allows for the more major problems of a system to be 
identified and corrected separately prior to the smaller issues. 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 21 of 24
 

Upon completing benchmarks, load tests will be executed according to the Workload 
Distribution models outlined in section 3 of this document.  These tests are designed to 
validate that the performance requirements outlined in section 2 have been met.  Once the 
goals have been met, load testing ends.  If the tests show that the performance goals have 
not been met, then bottlenecks must be determined and the application must be tuned if 
possible.  These tests will be executed on the <?????> environment. 
 
If critical bottlenecks are found, <Performance Engineering Team> and <stakeholder>will 
work together to determine how those bottlenecks are to be tuned.  Tuning may require 
<stakeholder>resources and/or change requests to the <Performance Engineering Team> 
contract.  While this is not expected, one cannot predict what performance tests may 
reveal. 
 
Each module will be tested with up to 50 virtual users individually initially.  When each 
individual module meets the acceptance criteria, the modules will be testing together at 
loads of 50, 100, 150, 200 and 250 virtual users. 
 

5.6.2 Common Tasks Tests 
<Example: 
 
The first tests to be conducted will not be module specific.  These tests will ensure that 100 
users can log into the system in a 1 hour period and traverse the <package application> 
navigation tree with no performance issues.  If these activities to not meet the acceptance 
criteria, tuning will begin here. 
> 

5.6.3 Remote Location Tests 
<Example: 
 
The <package application> production system will have geographically remote users.  After 
scheduled tests have been conducted locally and are determined to be generally acceptable, 
remote users will be asked to test the performance of the system manually.  This is not a 
formal test, but rather a sanity check.  If the remote users agree that the performance is 
generally the same, no further remote testing is required. 
 
If, however, the remote users determine that performance is significantly worse, remote 
testing will be done to determine the cause of the problem.  This could take one of several 
forms: 

a. Manual timed downloads of same file from same server locally and remotely to 
estimate network latency. 

b. Remote agent scripted downloads of same file from same server locally and remotely 
to determine network latency. 

c. Remote agent execution of developed performance scripts to determine other 
latency.  

> 

5.6.4 Stability Tests 
 
Stability scenarios test a system at and beyond the worse expected demand it is likely to 
face. The majority of critical deficiencies in the system will have already been identified 
during the execution of load tests, so this phase deals more with assessing the impact on 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 22 of 24
 

performance and functionality under a heavy or unreasonable load. Stability scenarios will 
also identify many other system bottlenecks not previously noticed, which may in fact be 
partially responsible for earlier identified problems. 
 
Heavy load scenarios are generally designed to be far more than a system can handle. They 
are used not to identify if a system fails, but where it fails first, how badly, and why. By 
answering the why question, it can be determined whether a system is as stable as it needs 
to be. 
 
The analysis performed in this phase can vary depending on the exact goals and objectives 
of the load testing. Results obtained from the test automation tool are often used in 
conjunction with results obtained directly from the system, where white-box testing has 
been employed. These tests are designed to find more subtle performance issues, such as 
memory leaks, caching and database locking but are not designed to collect end-to-end 
user experience measurements in most cases. 
 
5.6.4.1 Stress Tests 
 
Stress Tests are tests that use real-world distributions and user communities, but under 
extreme conditions. It is common to execute stress tests that are 100% of expected peak 
expected user-load sustained over 8-12 hours, and 150% expected peak user-load with 
normal ramp up and ramp down time.   
 
5.6.4.2 Spike Tests 
 
Spike Tests are tests that used real-world distributions and user communities, but under 
extremely fast ramp up and ramp down times. It is common to execute stress tests that 
ramp up to 100% or 150% of expected peak expected user-load in a matter of minutes 
rather than about an hour.   
 
5.6.4.3 Hammer Tests 
 
Hammer Tests have little or no resemblance to real-world distributions and user 
communities. These test take all existing load generation scripts and methods, eliminate 
user think times and increase load until something stops functioning properly.  These tests 
are designed to make the system fail.  Once failures occur, it can be decided how to 
mitigate the risk of that particular failure. 

5.6.5 Batch Baselines 
Batch process testing will be treated as a validation exercise unless/until any batch process 
does not complete within its allotted time window during validation.  Batch processes will be 
launched manually and timed.  Any batch that completes in under 90% of its allotted time 
window will be considered acceptable. Any batches that do not complete within 90% of their 
time window will be evaluated, by component, and iteratively tuned to the greatest degree 
possible. 
 

5.6.6 Production Validation Tests 
Production Validation is conducted to ensure that the application performs as expected in 
the production environment after testing and tuning have been completed in a test 
environment. 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 23 of 24
 

Upon completing the tuning effort, a load test (250 concurrent users) will be executed 
according to the Workload Distribution model outlined in Section 3.   This will take place in 
the production environment between deployment and going live.  This test is designed to 
validate that the performance results obtained in the <??????> environment are also 
achieved in the production environment. 

5.7 Identify Exploratory (Specialty) Tests 
 
The Identify Exploratory Test Needed aspect of performance engineering is a three-step 
process used to narrow the scope of the required exploratory test as much as possible 
before developing the actual test, or updating documentation.  The three activities in this 
aspect are: 

• Identify area (tier/component) of the test. 
• Identify the desired measurement(s) to be collected. 
• Identify the type of test needed. 

 
Exploratory (or Specialty) Tests are most commonly �Black box� and/or �White box� tests 
on specific components used to identify and tune the why behind the performance issued 
identified during various types of load testing described above.  These tests are generally 
not developed until a specific bottleneck or performance issue has been identified that 
requires more information to be gathered.  For this reason, detailed information about Black 
and White Box tests will not be specifically detail in the following sections.  They are here to 
explain how investigation may occur if the application is found to have performance issues 
requiring tuning. 

5.7.1 Black Box Tests 
 
Black box testing traditionally has involved testing a system as a whole; however, with the 
advent of multi-tiered systems, black box testing has come to also refer to testing tiers or 
components of a total system, since those tiers are often entire systems unto themselves 
with only loose ties to the other tiers of the system.  Tests that focus on a specific tier can 
determine whether the detected bottleneck resides in that tier.  Black box tests generally do 
not point to the specific bottleneck. To find the actual bottleneck, diagnostics may be 
performed on the tier while generating a load. 

5.7.2 White Box Tests 
 
White box testing treats the system as a collection of many parts. During white box testing, 
many diagnostics will be run on the server(s), the network, and even on clients. This allows 
the causes of bottlenecks to be easily identified, and therefore addressed.  White box 
testing can go as deep as individual lines of code, database query optimization, or memory 
management of segments of code. 
 
White box testing requires much greater technical knowledge of the system than does black 
box testing. To perform white box testing, knowledge is needed about the components that 
make up the system or tiers, how they interact, the algorithms involved with the 
components, and the configuration of the components. Knowledge on how to perform 
diagnostics against these components, and even what diagnostics are needed and are 
appropriate is required to execute white box tests. 
 
There are several problems with white box testing.  First, is the affect that running 
diagnostics has on system performance. Ideally, running diagnostics should have no impact 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 24 of 24
 

on performance. However, this is rarely possible since running diagnostics consumes some 
system resources. When considering the appropriateness of various diagnostics, consider 
the benefit vs. the impact on performance.  Second is that white box tests are often difficult 
and time consuming to develop and execute.  For this reason, white box tests should only 
be used when there is a high expectation that the tests will yield noticeable performance 
improvements. 

5.8 Tune 
 
The Tune aspect is at the heart of the Performance Engineering effort.  While Tune only has 
thee enumerated activities, there are entire shelves of books written about tuning almost 
every known component of a system or application.  The important part of Tuning within a 
Performance Engineering effort is the collaboration between the performance engineer and 
the system experts, developers, architects, DBA�s, system administrators, etc.  Remember 
to always re-baseline the system after tuning is accomplished.  The activities in the Tune 
aspect are: 

• Make Changes to the System 
• Validate Improvement of the Change 
• Document Improvement 

5.9 Project Closeout 
 
The Project Closeout aspect only has one activity, but that activity is important and 
independent enough to deserve an aspect of it�s own.  That activity is: 

• Document Results 
 
Typically, the Results document includes:    
 
! 95th percentile response times for each page/activity grouped by user load (Graphed) 
! Notations where actual responses did not achieve stated goals 
! Analysis of reported times, in particular where times did not meet stated goals 
! Appendices including: 

a. Spreadsheets of recorded times (min, max, avg, and std) for each user load 
b. Spreadsheet of average times grouped by user load 
c. Test execution reports (copied directly from playback tool) for each test 

executed 
 



Performance Engineering Strategy Proprietary and Confidential
Version 1.0 Page 25 of 24
 

6 RISKS 

6.1 Introduction 
<Example: 
The following section should detail all risks to the success of a performance engagement.  
The details of each risk should be explicit and mitigation strategies should be identified for 
each risk.   
 

6.2 Risk 1 Prioritizing mentoring vs. testing  
 
Discussion:  <stakeholder> and Performance Engineering Team must determine, in detail, 
the role of the Performance Engineering Team.  The Performance Engineering Team cannot 
reasonably be held responsible for both fully training the client employee and guaranteeing 
the efficiency and effectiveness of the engagement.  Some work will be accomplished by the 
client employee that cannot be fully reviewed.  Additionally,the Performance Engineering 
Team have years of experience that allow them to accomplish certain tasks more efficiently 
than a novice Performance Engineer. 

 
Mitigation Strategy:  Ensure client and Performance Engineering Team agree to the 
responsibilities of the Performance Engineering Team prior to starting work. 
 
Owner: Performance Engineering Team Lead & Lead stakeholder 
 
Status: Open 
 
> 
 


