
User
Experience,
Not Metrics

by:

R. Scott Barber

Part 5: What should I time and where do I put
my timers?

“Even with the response-time market in a continuing stage of development, 
enterprises  should  deploy  application  response-time  tools  now.  The 
measurements from these tools should be used to understand the response-
time characteristics of the most-critical applications, to help establish and 
meet service-level goals, and to correlate the performance experienced by 
external  users  with  customer  satisfaction.”   End-to-End  Application 
Response Times: Market Update Gartner Inc. Oct 2000

Since this article was published in Gartner, I have been using this quote 
shamelessly  to  promote  a  transition  in  thought  from  component-based 
measurement  to  User  Experience  measurements.   Though  thought 
transitions  don’t  happen  overnight,  today  more  and  more  managers  and 
stakeholders are asking for User Experience measurements and validation 
over the more traditional component based performance metrics.  

Our previous three articles were collectively about Modeling Real Users.  I 
am assuming that you have read these articles and now understand how to 
determine and model realistic usage patterns, and agree that a test can only 
ever be as accurate as its model.  Using that as a starting point, we now 
move into  our  next  group of  three articles,  which are  collectively titled 
Meaningful  Times.   This  topic  will  focus  on  capturing  and  interpreting 
meaningful times during a load test.   In the third collection of three articles 
we will discuss how to organize your times and interpretations into easy to 
understand  reports  for  project  stakeholders.  This  month’s  edition  of  the 
"User Experience, Not Metrics" article series discusses how to use Rational 
TestStudio  to  collect  accurate  and  meaningful  User  Experience 
measurements through the use of timers.  Rational’s TestStudio is one of the 
market leading application response-time tools available today.

If you are new to performance testing, or to this series, it is imperative that 
you understand the concepts presented in Part  2 of this series where we 
discussed how to model individual user delays,  since in many ways this 
article is a continuation from that one.  The intent of this article is to discuss 
as well as demonstrate the use of TestStudio based on  years of experience. 
The article is intended for all levels of TestStudio users, but will be most 
useful to Intermediate tool users and above. 

What Should I Time?
One  critical  part  of  Performance  Testing  is  collecting  meaningful 
measurements.  If the wrong measurements are collected at the wrong time, 
bottlenecks may be missed, results may be misleading, and measurements 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006             1



may not correlate to actual user-experience.  Meaningful times can also aid in the process of tracking 
down bottlenecks that are detected.  Tracking and fixing bottlenecks, often referred to as Performance 
Tuning, is not explicitly discussed in this series of articles.  It  is worth mentioning that all  of  the 
concepts  and  methods  discussed  in  this  series  have  been  derived  through  dozens  of  Performance 
projects that all included actual tuning of systems.

The entire reason I started giving the talk that lead to this article series was to show people the value of 
user experience measurements over component based metrics.  My argument was, and still is, that it 
doesn’t matter how well each component is performing independently if the overall system performs 
poorly.   Component  based testing and tuning has been touted over the years as being synergistic, 
implying that if each component is tuned to its best possible performance that the system as a whole 
will perform acceptably.  This simply isn’t a valid assumption.  Until a system is loaded with a realistic 
user load and observed under this load, over time, one cannot predict what an actual user’s experience 
will be.  It is often valid to assume that if each component is tuned to its best possible performance, the 
system as a whole can’t be further tuned without re-architecting at least some part of the system.  Even 
in this case, stakeholders need to know how many users the system can support before performance 
becomes unacceptable.  For these reason, I started my own personal crusade to make the IT world 
aware of the value of user experience measurements, a.k.a. end-to-end system response times.

Please don’t infer from the last paragraph that I oppose component based testing, because I don’t. 
What  I  oppose  is  EXCLUSIVE  component  based  testing.   Testing  components  individually  is  a 
necessary part of the tuning process.  In the next few paragraphs you will see how component based 
measurements  compliment  user  experience  measurements  to  create  a  complete  picture  of  system 
performance as a whole.

There are two popular approaches to performance measurement collection.  These are Top-Down and 
Bottom-Up approaches.  We will explore these approaches in detail below.  A top-down approach is 
the right place to start when the actual performance of a system or application is unknown, or when 
performance is known, but no bottleneck has been determined.  A bottom-up approach is appropriate 
once a specific bottleneck has been identified.  How does this relate to User Experience measurements? 
Simple.   The Top-Down approach starts  and ends  with User  Experience measurements,  while  the 
Bottom-Up  approach  starts  with  component  based  measurements  and  ends  with  User  Experience 
measurements.  In our examples, the first thing we need to do is identify IF there are any bottlenecks 
and if so WHERE they are located.  Therefore, we’ll start our discussion with the top-down approach.

Top-Down Approach

Simply  put,  a  top-down  approach  to  measuring  performance  begins  by  determining  actual  user 
experience and only moves into further analysis where more granular measurements are collected when 
poor  performance  is  detected.   User-experience  measurements  are  easy  to  conceptualize.   These 
measurements capture the time that passes from when a user takes a particular action to when the user 
sees the results of that action.  This applies for all types of applications, be they web, client server, 
embedded software, etc.  For example, if you were to time how long it took for Part 2 of this series to 
fully load when you clicked on the link in the beginning of this article that would be a user experience 
measurement.

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         2



Generally, when conducting a performance test, very clear performance goals have been established. 
The goals should be focused on an acceptable user experience and may look something like this:

“All static pages on the website will display in 8 seconds or less on a 56.6 kbs modem 95% of 
the time while 500 users are accessing the site according to the documented user community 
model.”

This is clearly a requirement that implies a top-down approach.  It is easy to see that page generation, 
communications between the client and the server, and client side processing time is what needs to be 
measured in the case of this requirement.  .  For a web-based application, this will be the most common 
starting measurement.    These measurements are collected with Rational TestStudio using timers.  We 
will discuss placement of these timers below.  

When these timers reveal measurements that do not meet the performance goals,  the next level of 
measurements is needed.  Luckily, TestStudio collects this next level of detail automatically.  These 
measurements are known as individual transaction times, identified by command ids.  Since we have an 
entire article dedicated to consolidating and interpreting collected measurements, we aren’t going to 
discuss  these  times in  detail  here.   We’ll  look at  how TestManager  organizes  and  displays  these 
collected times in the Viewing Times section below.

Bottom-Up Approach

A  bottom-up  approach  would  be  appropriate  if,  for  example,  it  was  determined  that  only  user 
transactions  requiring  a  database  search  yielded  unacceptable  performance.   In  a  case  like  this, 
TestStudio could be used to record and playback database searches directly against the database.  This 
would be done without going through the client computer, the web server, or the application server. 
This kind of load would not be modeled to match real user patterns and the measurements collected 
during this kind of test would be limited to the database response time.  In this way, the database could 
be tuned for best possible performance while being searched.  The actual measurements collected in 
this case would be individual transaction measurements.  At the conclusion of component tuning, in 
this case of database searches, user experience measurements must be collected to determine if the 
overall performance goals have been met.

Occasionally, a system or application will have specific component load or performance requirements. 
For example, a database may be required to sustain 30 transactions per second without queuing. This 
often comes into play when an individual component of the system is outsourced.  When a component 
is outsourced, the provider must be held to very specific performance requirements.  This is usually 
done  by  establishing  specific  service  level  agreements,  and  by  periodically  testing  the  system to 
validate compliance.  An example of a performance requirement of a service level agreement for an 
outsourced database follows:

“All database transactions will be processed in 2 seconds or less, 95% of the time while the 
database is receiving 5 or fewer requests per second.”

It is well beyond the scope of this article to discuss how to do the kind of testing I just described, or to 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         3



discuss how to tune our theoretical database.  If you find yourself in a position like the one above, 
where you have pinpointed a bottleneck, and created a repeatable test to exploit that bottleneck, but 
don’t know how to fix it, you can always do what I do… Call the smartest person you know and offer 
to buy them lunch for some insight!

If these types of measurements are not granular enough to detect or tune a particular bottleneck, you 
may need to look to another tool, such as a code profiler, to collect what are known as “white box” 
measurements.  TestStudio can only capture hardware statistics and times for transactions that occur 
over a network of some sort.  If the bottleneck is actually inside a piece of code, that is where profilers 
can be used.  Rational has several tools available that may be appropriate for this level of analysis, such 
as Purify, Quantify, and PureCoverage.  These tools are part of the Rational TestStudio package, or are 
available separately.  These are generally considered to be developer tools, but I felt it was appropriate 
to mention them here for completeness.

Individual Transactions

We have mentioned Individual Transactions in both of the above sections, so I thought we’d discuss 
what an individual transaction is in a little detail by themselves.  Individual transactions are actually a 
part of every performance testing approach.  Whether testing a website, a client server application, or 
just  the database component of  a  multi-tier  application,  every communication that  occurs between 
computers is made up of individual transactions.  A web page may be generated in a single transaction, 
but most web pages are actually painted as a result of many (I have seen as many as 46) individual 
HTTP requests,  or  transactions.   These  transactions  represent  each  individual  object  that  must  be 
retrieved from the server to then display to the user.  A client server application may handle everything 
except database transactions on the client side, so there may only be one measurable transaction per 
user interaction with the system.

This is why when you insert timers into your script while recording, you often see many commands in 
the script between the start and stop times.  If you refer to the script we created during Part 2 you will 
notice  that  Page  1  generated  3  individual  transactions,  or  http_request  commands  and  Page  2 
generated 12 individual transactions.  You can see that these individual transactions, when viewed 
collectively,  yield  a  user  experience  measurement,  but  when  viewed  individually  they  do  not. 
Individually, they represent just on part of that user experience.  It is valuable to see these individual 
transactions because they can often show you, for example, whether the slow component of a web page 
is a graphic, or the database search.

Approach Summary

Determining when to start with which approach is sometimes not clear.  As an example, let’s consider 
the online bookstore from our previous articles.  At some point, if a customer has decided to order, they 
must start by entering their billing information.  Since we don’t know how well this function within the 
application will perform, we would begin with a top-down approach by collecting a user-experience 
measurement.  This measurement is found by capturing the time elapsed between the moment the user 
clicks the submit button, until the “your transaction has been approved” message appears on the next 
page.  If that user transaction is performing unacceptably, then a bottom-up approach may be taken, 
with  focus  on  the  components  that  are  involved  in  completing  the  transaction.   In  this  case,  one 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         4



measurement that may be useful is capturing the time between when the application server sends the 
update statement to the database and when the database acknowledges the update.  This transaction is 
just one of many components to the complete user transaction.  It makes no sense to capture this time 
unless it can be determined that the database transaction may be the actual bottleneck.  So you can see 
that no matter which approach you start with, you will likely use both during the course of performance 
testing, but will always end with user experience measurements.

Where do I put the Timers? 
 Top down, bottom up, either way we eventually want to collect user experience measurements.  In this 
section we’ll explore several methods of placing timers while recording or editing VU scripts.  The 
following sections are written with the assumption that the reader is familiar with inserting blocks and 
timers into a script while recording.  Information about customizing toolbars and inserting blocks and 
timers into a script is available in the documentation that came with your software.

Blocking User Activity 

Before we actually determine where to place our timers we need to determine what user activity goes 
inside and outside the timers.  In most cases this is a fairly simple task.  Whenever a user clicks a 
button or a link that causes communication back to the server, it needs to be captured and timed.  On a 
static website, each timer STARTS immediately before performing an activity that leads to a new page 
being  generated  and STOPS as  soon as  that  page  is  completely  painted.   This  gets  a  little  more 
complicated when there are active components on the client side of the application.  It is often unclear 
to the tester whether processes (like data validation upon submittal or active menu bars that change 
based  on  mouse  position)  invoke  client  side  or  server  side  processing.   If  you  have  access  to  a 
developer, they can tell you what invokes server side processing and what doesn’t.  If you don’t have 
access to a developer, you just have to experiment.  Remember that VU scripts don’t actually measure 
client side processing time during playback, but do indirectly collect that time during recording.  

If you don’t know what does and doesn’t invoke server side processing, the easiest way to find out is to 
block everything with blocks or timers while recording and manually delete timers in your script that 
have no activity between the start and stop commands.

This may be easier seen with an example.  Let’s return to www.noblestar.com.  On the homepage, we 
notice that as we hover over the menu selections in the top menu bar, the bottom menu bar changes 
dynamically based on which main heading is currently highlighted.  Initially I thought this was all 
client side processing, but I later found that it wasn’t.  When I recorded the following script I found that 
I was wrong:

1) Start a timer, or block timer, named “Home Page” and launch the browser going directly to 
noblestar.com 

2) Stop the timer as soon as the page is loaded.

3) Start a new timer named “Menus”

4) Move your mouse around the screen, ensuring that you highlight several menu options, but 
don’t click on any

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         5

http://www.noblestar.com/


5) Stop the timer

6) Start a new timer called “Page1”

7) Move directly to a menu option or link and click it

8) Stop the timer as soon as the next page is loaded

9) End the recording.

When I did this exercise, I got the attached script.  As you can see in this script, there were a lot of 
requests and receives recorded inside the “Menus” timer.  The resulting question is “so where to I put 
my timers?”

Part of this answer is obvious.  The “HomePage” timer was captured correctly.  While you could enter 
timers that block hovering over each menu selection, in this case that would be overkill.  In truth the 
transactions that produce the dynamic menu are very few, very fast, and cached the first time.  If we 
use block timers (discussed in detail below) rather than timers, we can stop the “HomePage” block 
timer, move the mouse to highlight the link that we want to navigate to next, then start the “Page1” 
block timer.  The key is to ensure that the link you want to click on is visable on the screen before 
starting the timer, and ensuring that you don’t hover over a menu option that will change what is 
visable  on the screen before clicking the link.  This method logically  separates the script  into two 
distinct page load times and an identifiable set of individual transaction times that can be analyzed for 
the menu transactions.  See the entire script here or the listing below for a section of the script that 
shows just the block timers and a small selection of command id’s.

/*
      ->-> Session File Information <-<-
*/

#include <VU.h>
{
push Http_control = HTTP_PARTIAL_OK | HTTP_CACHE_OK | HTTP_REDIRECT_OK;
push Timeout_scale = 200; /* Set timeouts to 200% of maximum response time */
push Think_def = "LR";
Min_tmout = 120000;       /* Set minimum Timeout_val to 2 minutes          */
push Timeout_val = Min_tmout;
/* Start_Block "Home Page" */

push Think_avg = 0;

www_noblestar_com_2 = http_request ["Home Pa001"] "www.noblestar.com:80",
HTTP_CONN_DIRECT,

   "GET / HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "\r\n";

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         6



   { string SgenURI_001; }
   SgenURI_001 = _reference_URI; /* Save "Referer:" string */

start_time ["Home Page"] _fc_ts;

set Server_connection = www_noblestar_com_2;

http_header_recv ["Home Pa002"]  200; /* OK */

http_nrecv ["Home Pa003"]  100 %% ; /* 1178 bytes */

…

stop_time ["Home Page"]; /* Stop_Block */

set Think_avg = 20119;

set Server_connection = www_noblestar_com_1;

 /* Keep-Alive request over connection www_noblestar_com_1 */
http_request ["Noblest~001"] 
   "GET /images/spacer.gif HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Referer: " + SgenURI_003 + "\r\n"
   /* "Referer: http://www.noblestar.com/global/top.html" */
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "If-Modified-Since: Fri, 29 Dec 2000 18:58:43 GMT\r\n"
   "If-None-Match: \"457fe811-1-55-3a4cdee3\"\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "Cookie: NSES40Session=94f%253A3ca25b7e%253A53c78693dbcf7e9d\r\n"
   "\r\n";

http_header_recv ["Noblest~002"]  304; /* Not Modified */

http_nrecv ["Noblest~003"]  100 %% ; /* 85 bytes - From Cache */

…

http_request ["Noblest~109"] 
   "GET /images/enterprise_on.gif HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Referer: " + SgenURI_003 + "\r\n"
   /* "Referer: http://www.noblestar.com/global/top.html" */
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "If-Modified-Since: Thu, 31 Jan 2002 22:30:19 GMT\r\n"
   "If-None-Match: \"654a4790-1-12e-3c59c57b\"\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         7



   "Cookie: NSES40Session=94f%253A3ca25b7e%253A53c78693dbcf7e9d\r\n"
   "\r\n";

http_header_recv ["Noblest~110"]  304; /* Not Modified */

http_nrecv ["Noblest~111"]  100 %% ; /* 302 bytes - From Cache */
/* Start_Block "Page1" */

set Think_avg = 9273;

set Server_connection = www_noblestar_com_1;

 /* Keep-Alive request over connection www_noblestar_com_1 */
http_request ["Page1001"] 
   "GET /images/custom_off.gif HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Referer: " + SgenURI_003 + "\r\n"
   /* "Referer: http://www.noblestar.com/global/top.html" */
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "If-Modified-Since: Thu, 31 Jan 2002 22:30:18 GMT\r\n"
   "If-None-Match: \"f5065728-1-136-3c59c57a\"\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "Cookie: NSES40Session=94f%253A3ca25b7e%253A53c78693dbcf7e9d\r\n"
   "\r\n";
start_time ["Page1"] _fs_ts;

http_header_recv ["Page1002"]  304; /* Not Modified */

http_nrecv ["Page1003"]  100 %% ; /* 310 bytes - From Cache */

…

stop_time ["Page1"]; /* Stop_Block */

}
Listing 1: Portion of Noblestar_block_example script, as recorded 

In the example below, we will execute this script and look at how the results are organized.

Timers vs. Block Timers

So  far  in  this  article,  we  have  been  oscillating  between  the  use  of  timers  and  block  timers. 
Fundamentally, we know that these serve the same overall function.  They both time the “stuff” that 
happens between the start and stop commands in the script.  There are a few differences that are worth 
discussing though.  If you record a script and start both a timer and a block timer at the same time, and 
stop them both at the same time, you will end up with script segments that look like the listings below. 
In general testers will choose one method over the other based on personal preference of how they 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         8



prefer the labeling of individual transactions.

/* Start_Block "Home Page" */

push Think_avg = 0;

www_noblestar_com_2 = http_request ["Home Pa001"] "www.noblestar.com:80",
HTTP_CONN_DIRECT,

   "GET / HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "\r\n";

   { string SgenURI_001; }
   SgenURI_001 = _reference_URI; /* Save "Referer:" string */

start_time ["Home Page"] _fc_ts;

set Server_connection = www_noblestar_com_2;

http_header_recv ["Home Pa002"]  200; /* OK */

http_nrecv ["Home Pa003"]  100 %% ; /* 1178 bytes */

set Think_avg = 1602;

…

stop_time ["Home Page"]; /* Stop_Block */
Listing 2: Portion of Noblestar_block_example script, as recorded 

start_time ["Home Page"];

push Think_avg = 0;

www_noblestar_com_2 = http_request ["Noblest~001"] "www.noblestar.com:80",
HTTP_CONN_DIRECT,

   "GET / HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "\r\n";

   { string SgenURI_001; }
   SgenURI_001 = _reference_URI; /* Save "Referer:" string */

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         9



set Server_connection = www_noblestar_com_2;

http_header_recv ["Noblest~002"]  200; /* OK */

http_nrecv ["Noblest~003"]  100 %% ; /* 1178 bytes */

set Think_avg = 11582;

…

stop_time ["Home Page"];

Listing 3: Portion of Noblestar_menu_example script, as recorded 

If you look closely at these two script segments, you will notice there are two differences, but are 
otherwise identical.  You can see that the two start times seem to begin in different places, and that the 
start time command in Listing 3 has no extension, while the start block command in Listing 2 has an 
extension of _fs_ts.  The simple explanation is that these are actually two different ways of scripting 
exactly the same thing.  

Let  me  give  you a  slightly  more  thorough  explanation  of  a  very  complex  topic:   The  start_time 
command supports 6 extensions.  These extensions specify the point during a transmission where the 
timing begins. They are:

_fc_ts  which stands for First Connect Timestamp

_fs_ts  which stands for First Send Timestamp

_fr_ts  which stands for First Receive Timestamp

_lc_ts  which stands for Last Connect Timestamp

_ls_ts  which stands for Last Send Timestamp

_lr_ts  which stands for Last Receive Timestamp

When no extension is specified, the script defaults to _fs_ts and, thus, when the two scripts above are 
executed,  they  both  time  the  same  thing.   I  debated  including  a  detailed  explanation  of  the  six 
extensions and their various uses, but quickly realized that it would be too ambitious of an undertaking 
as an add-on to this article.  

The second difference we will notice between the two script segments is that Listing 2 shows command 
ids inside the timer as [“Home Pa001"], and Listing 3 show them as  ["Noblest~001"]  When a timer is 
used, the Command ID label is always the first 8 characters of the name of the script followed by a 
sequential number (or the first 7 followed by a ~ if the name of the script is longer than 8 characters). 
When a block is used, the Command ID labels inside the block are the first 8 characters of the name of 
the timer block, rather than the name of the script, followed by the sequence number.  This may not 
seem significant at first, but next month when we start interpreting times, we will see how much easier 
it is to track down bottlenecks when we can see which timer each individual transaction time belongs 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         10



to.  

When I execute the Noblestar_menu_example script, for 1 user over 10 iterations, I get the following 
results in TestManager:

Figure 1 – Noblestar_menu_example Results

When I execute the Noblestar_block_example script, for 1 user over 10 iterations, I get the following 
results in TestManager:

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         11



Figure 2 – Noblestar_block_example Results

At first glance the timers look identical.  Looking closer we see that the individual command ids in 
Figure 2 are easily identifiable as to which timer they reside in . Conversly in Figure 1, the only way to 
associate a command id to a specific timer is to return to the script, find the command in question, then 
search the script to see what timer it comes immediately after.

Nesting Timers

For the sake of completeness, I felt the need to add this short section to address nested timers.  From 
the very first time I learned about using Rational Tools for Performance Testing, I was told to never 
nest timers.  Through a significant amount of research and testing I have found an exception to the 
“don’t nest timers” rule that I’d like to share with you.  First, let me describe what I mean by nested 
timers.  If, for some reason, you were to start timer A, then start timer B, then stop timer A, then stop 
timer B, that would be a nested timer.  Generally, there is no need to try to nest timers if you are 
measuring page load times for web pages.  However, I have found that it sometimes adds value to put 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         12



timers around individual frames in web pages as well as around the entire page.  Now, I admit, to do 
that, you have to be able to manually determine what command ids are part of which frame on your 
own, and that isn’t the point I am trying to make.  The actual point is, if you have a need to put timers 
inside of timers, the order of the starts and stops makes a difference.  For timers in timers to return the 
correct values it is important to organize them so that one timer is completely enclosed within the other, 
and not staggered like in the example above.  For example, below you see timers completely enclosed 
within other timers, which would yield correct results:

start_time  [“Outer”];

start_time [“Inner1”];

stop_time [“Inner1”];

start_time [“Inner2”];

stop_time [“Inner2”];

stop_time [“Outer”];

This example shows timers with staggered start and stop times that will yield incorrect results.

start_time  [“Outer”];

start_time [“Inner1”];

start_time [“Inner2”];

stop_time [“Outer”];

            stop_time [“Inner1”];

stop_time [“Inner2”];

I would love to be more specific about why the results are inaccurate, but I have yet to completely 
figure out the pattern.  If you want to test this yourself, create a script with the timers listed above, and 
put varying delays between each timer command and compare the results with the known delay times 
in TestManager.  

Manipulating Think_avg’s

To date, we haven’t discussed Think_avgs in our script in great detail.  If you look at the set think_avg 
times in Listings 2 and 3, you will notice that in Listing 2 there is a 1.6 second think_avg and in Listing 
3 there is an 11.6 second think_avg – in both cases, they are inside the timer.  Also in both cases, it 
should be obvious that there was not 1, or 11 seconds of client processing time involved in the Home 
Page transaction.  In Part 2 we discussed substituting delays for think_avgs to simulate user think 
times.  Once you have done that, it is important to search through the rest of your script and adjust the 
remaining think_avgs to ensure they reflect client side processing time, not user think time inside the 
timers.  

Impact on User Delay Times

In Part 2 of this series we discussed how to insert delay times when using timers, not block timers.  In 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         13



the case of block timers, all of the same theories apply, but the delays need to be place immediately 
after the previous stop timer command, rather than immediately before the start timer command.  See 
the listing below.

/* Start_Block "Home Page" */

push Think_avg = 0;

www_noblestar_com_2 = http_request ["Home Pa001"] "www.noblestar.com:80",
HTTP_CONN_DIRECT,

   "GET / HTTP/1.1\r\n"
   "Accept: */*\r\n"
   "Accept-Language: en-us\r\n"
   "Accept-Encoding: gzip, deflate\r\n"
   "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)\r\n"
   "Host: www.noblestar.com\r\n"
   "Connection: Keep-Alive\r\n"
   "\r\n";

   { string SgenURI_001; }
   SgenURI_001 = _reference_URI; /* Save "Referer:" string */

start_time ["Home Page"] _fc_ts;

set Server_connection = www_noblestar_com_2;

http_header_recv ["Home Pa002"]  200; /* OK */

http_nrecv ["Home Pa003"]  100 %% ; /* 1178 bytes */

// set Think_avg = 1602;

…

stop_time ["Home Page"]; /* Stop_Block */

delay(uniform(2000,8000));

Listing 4: Portion of Noblestar_block_example script, modified

Now You Try It
Rather than writing separate exercises to demonstrate the use of timer blocks and timer, I recommend 
that you follow the steps I have outlined in this article to replicate the scripts I created for this article. 
You are  also welcome to download the scripts  linked to  this  article  and play them back yourself 
(although I request that you play them back with 10 users or fewer so my webmaster doesn’t have a 
heartattack).  

If you have been using TestStudio for some time, you likely already have a preference between block 

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         14



timers and timers, but I suggest that you take the time to experiment with the use of each.  I had been a 
“timer-guy” for many years before writing this article, but while I was creating the examples I used, I 
found that block timers would have been quite valuable on some of my recent projects.

If any of you should decide to do extensive research on nesting timers, I request that you share your 
findings with me.  As I mentioned, this has been an area that I have been researching for some time.  

Summing It Up
While I took the opportunity in this article to introduce some concepts tangential to the central theme, 
the main point should still be clear “To collect and analyze user experience measurements, you must 
place your timers correctly”.  Improperly placed timers will yield misleading or inaccurate results while 
correctly placed timers will show you exactly what the current performance of a system or application 
is, and help you determine what, if anything, needs to be tuned for improved performance.  

References
1) End-to-End Application Response Times: Market Update Gartner Inc. Oct 2000

Acknowledgments 
• The original version of this article was written on commission for IBM Rational and can be found 

on the IBM DeveloperWorks web site 

About the Author
Scott Barber is the CTO of PerfTestPlus (www.PerfTestPlus.com) and Co-Founder of the Workshop on
Performance and Reliability (WOPR – www.performance-workshop.org).  Scott's particular specialties
are  testing  and  analyzing  performance  for  complex  systems,  developing  customized  testing
methodologies, testing embedded systems, testing biometric identification and security systems, group
facilitation and authoring instructional or educational materials.  In recognition of his standing as a
thought leading performance tester, Scott was invited to be a monthly columnist for Software Test and
Performance Magazine in addition to his regular contributions to this and other top software testing
print and on-line publications,  is regularly invited to participate in industry advancing professional
workshops  and  to  present  at  a  wide  variety  of  software  development  and  testing  venues.   His
presentations  are  well  received  by  industry  and  academic  conferences,  college  classes,  local  user
groups and individual corporations.  Scott is active in his personal mission of improving the state of
performance testing across the industry by collaborating with other industry authors, thought leaders
and expert practitioners as well as volunteering his time to establish and grow industry organizations.
 His tireless dedication to the advancement of software testing in general and specifically performance
testing is often referred to as a hobby in addition to a job due to the enjoyment he gains from his
efforts.

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         15

http://www.ibm-developerworks.com/


About PerfTestPlus
PerfTestPlus was founded on the concept of making software testing industry expertise and thought-
leadership available to organizations, large and small, who want to push their testing beyond "state-of-
the-practice"  to  "state-of-the-art."   Our  founders  are  dedicated to  delivering expert  level  software-
testing-related  services  in  a  manner  that  is  both  ethical  and  cost-effective.   PerfTestPlus  enables
individual experts to deliver expert-level services to clients who value true expertise.  Rather than
trying to find individuals to fit some pre-determined expertise or service offering, PerfTestPlus builds
its services around the expertise of its employees.  What this means to you is that when you hire an
analyst, trainer, mentor or consultant through PerfTestPlus, what you get is someone who is passionate
about what you have hired them to do, someone who considers that task to be their specialty, someone
who is willing to stake their personal reputation on the quality of their work - not just the reputation of
a distant and "faceless" company.

User Experience, Not Metrics - Part 5: What should I time and where do I put my timers?
© PerfTestPlus, Inc. 2006         16


	Part 5: What should I time and where do I put my timers?
	What Should I Time?
	Top-Down Approach
	Bottom-Up Approach
	Individual Transactions
	Approach Summary

	Where do I put the Timers? 
	Blocking User Activity 
	Timers vs. Block Timers
	Nesting Timers
	Manipulating Think_avg’s
	Impact on User Delay Times

	Now You Try It
	Summing It Up
	References
	Acknowledgments 
	About the Author
	About PerfTestPlus

