Using Failure Modes
to Power Up Your Testing

@

Dawn Haynes
Senior Trainer & Consultant

4 A STARWest - October 2008

© 2008 PerfTestPlus, Inc.



What inspired this talk?

The observation that w.
0 wrn‘rJ .ana rel
Same bugs over r-rnrf over

© 2008 PerfTestPlus, Inc.



Attributions & Credits

= Common software errors and analysis tools

+ Glenford Myers, James Whittaker, Elisabeth
Hendrickson, Hugh Thompson, James Bach, Cem Kaner

= Other sources
» SQE, IEEE, ISO, ASQ

= Other references - disclaimer

* Any missing references to the original author or source
is unintentional if pointed out will be promptly corrected

+ Some errors and omissions may be due to a lack of
proper citing on some Web sites, books, articles and

other materials I have used
o

© 2008 PerfTestPlus, Inc.



Defects — Typical Approach

co\“'\w‘

Test or use software

D) \ | »
~Re-runtesits

© 2008 PerfTestPlus, Inc.



Results of this Approach

| \ Perceived Software Insurance
Find (prevent known bug escapes)

OJ\\|=

bus

© 2008 PerfTestPlus, Inc.



Repeated Test Syndrome

 time to run

© 2008 PerfTestPlus, Inc.



Can we do better?

= Through defect analysis, can we discover
+ Other ways to make the same bug happen?
¢ Other places where the same bug happens?

= Adjust regression tests to be more powerful
+ Apply variations (data, speed, sequence, etc.)

* Create a generic test instead of a specific
version that blocks only one instance of a failure

@ |
© 2008 PerfTestPlus, Inc.



Power Up Strategies

= Create new specific tests using
+ Failure modes and effects analysis (FMEA)
+ Cause-effect mapping / graphing

» Create new generic tests using

+ Research on technologies, functionality or
processes

* Reported defect patterns and trends

@ |
© 2008 PerfTestPlus, Inc.



Failure Modes and Effects Analysis

= FMEA is intended to document:
* a Failure
+ its Mode
* its Effect
* by Analysis
* in a cause-effect manner.

&) © 2008 PerfTestPlus, Inc.



Simple Software FMEA Example

Causes

Effects

FUNCTION: View Search Results

Undesired behavior

Failure causes or
conditions

Possible results of
failure occurring

Sluggish response to client/Ul

« Low memory condition (client)
* Slow network connection
* Qverloaded server

« User repeats operation
« User abandons operation

 User closes program during processing

© 2008 PerfTestPlus, Inc.



Fishbone (Ishikawa) Diagram

= Map out (relate/group/list) possible ways for
data corruption to occur

Database GUI handling
~data type . Input
; «
leld length N\ error fald ‘
error d |
validation
>

retrieval
error

packet data
corruption

dropped

g “temporary storage
packet

" (conversion error)

Transit Memory

°
© 2008 PerfTestPlus, Inc.




Cause-Effect Graphing

= Typically used to illustrate relationships
between
* Causes (inputs)
+ Effect (outputs)

= .. for the purpose of extracting test cases
from detailed specifications

= | et's use this to analyze and map out actual
or potential application behavior

)
-3
y
(8

© 2008 PerfTestPlus, Inc.



Extracting Causes and Effects

Sendfile Command

Outcomes: if all arguments are correct, file is sent;
otherwise error message is generated

Argl= an
existing file in
the sender’s

home directory

Arg2 = name of Arg3 = the
the receiver’s file userid of the
server receiver
|

Causes Effects

. The first argument 15 the name of an existing file | 100. The file 15 successfully sent.
in the sender’s home directory. 101. The sender obtains an error message.
! The second argument 15 the name of recetver's
file server.
3. The third argument 1s the receiver s usernd.
Table 2.1 - List of causes and effects

Ref: Cause Effect Graphing Analysis and Validations of
Requirements, Nurimsulu & Probert

© 2008 PerfTestPlus, Inc.



Cause-Effect Graph — Example

The first argument is the L
o . ~——, The file is
name of an existing file (1 00) Tl o
- s ~—_/ successfully sent.

in the sender’s home
directory.

The second argument is
the name of receiver's
file server.

The third argument is the - 701) The sender obtains
receiver’s userid. : ~_/ an error message.

igure 2.2 - The Cause-Effect Graph obtained

Mapped to a

decision table
Effects

100

101

Figure 2.3 - Decision Table produced from
CEG given in Figure 2 2 using Myers™ rules

Ref: Cause Effect Graphing Analysis and Validations of

Requirements, Nurimsulu & Probert ©2008 PerfTestPlus, Inc.



Cause-Effect "Style"” Exploration

‘ Cause ‘Category ‘ Effect

Preferred | Normal start

« Starts with first-run operations in effect
(wizard,help, etc.)
Start » Starts with info/warning/error message(s)

Sub-par
operation

Failure case | * Does not start but reports error message
 Does not start or report error message

= What interacts with the primary cause (input, trigger, state,
etc.) to create various effects?

© 2008 PerfTestPlus, Inc.



What are some generic failures?

= [ncorrect result returned

= Data corruption or truncation

= Slow response or hang

= Display errors

= Memory leak

= Crash or unexpected shutdown
» Incorrect error messages

2~ )
o
b4

© 2008 PerfTestPlus, Inc.



Historical Faillures

= [nternal sources
+ Defects from formal testing groups
* Developer submitted issues
+ Issues reported from other staff
*+ Anomalies and intermittent failures

= External sources
+ Customer submissions (defects, requests)
+ [ssues reported by beta testers
* Reports from consultants or field engineers

@ |
© 2008 PerfTestPlus, Inc.



Historical Failure Analysis

= Target defects or other incorrect behavior
* Perform root-cause analysis if possible
* Group similar items (by guess or by cause)
* Look for patterns

= Try to create your own generic tests based
on these patterns

* Seek to create test ideas instead of single tests
* Make lists (or search for lists/heuristics/guides)

@)—
g © 2008 PerfTestPlus, Inc.



Generic Failure Analysis

= Error guessing / bug hunting
= Software behavior and interfaces
= Technologies and architectures

» Processes, standards, SDLC used

-~
é/ © 2008 PerfTestPlus, Inc.



Error Guessing

= Using experience as a guide

= Remembering frequent or spectacular
failures and going on a hunt

= Every software tester has a bucket of these
* Zero, null, blank, space, -1
* Special characters, delimiters
¢ ...and more

-~
é/ © 2008 PerfTestPlus, Inc.



Software Behavior & Interfaces

= Generic capabilities
+ Input
+ Qutput
+ Data handling (storage & retrieval)
+ Computation

= [nterfaces and integration points
* GUIs, APIs, devices
+ Operating system, registry, file system
+ Other supporting software

z © 2008 PerfTestPlus, Inc.




Use Generic Software "Attacks”

= How to Break Software book
+ 17 user interface attacks
e Long strings
e Repeating tasks or inputs

e Use default values
e Interacting inputs or features

+ 6 file system interface attacks

* Generic methods for attacking the operating
system and supporting software

» Build your own list of Whack-a-Mole tests!

z © 2008 PerfTestPlus, Inc.




Technology Areas

= Programming languages
+ Java
¢ C/CH++
= Architectures
+ SOA
* Web
+ Client/server
= Technical implementations
¢ Security

@ |
© 2008 PerfTestPlus, Inc.



Some Resources for Analysis

= Web
+ How to Break Web Software (Whittaker & Andrews)

= Security

+ How to Break Software Security
(Whittaker & Thompson)

¢+ Common vulnerabilities database
e http://cve.mitre.org

¢ CERT
e http://www.us-cert.gov/cas/alldocs.hmtl

@ |
© 2008 PerfTestPlus, Inc.



Processes

= Software development lifecycle & methods
* Agile, waterfall, iterative, V-model, etc.
¢ Test driven development, unit testing
+ Coding standards, code reviews

= Formal processes and standards
+ Six Sigma, CMMI
+ ISO, IEEE
* Regulatory and others (FDA, SEC, 508, i18N ...)

@ |
© 2008 PerfTestPlus, Inc.



Process Analysis

= Seek out standards and processes
= Understand what they will catch or prevent
= Jdentify what they are not good at

= Look to reduce redundancy and duplication
of effort

* Employ the “trust but verify” technique
* Reduce system test emphasis on covered areas

= Develop tests to cover the gaps

///-(- An)
-3
/ 4
L~

© 2008 PerfTestPlus, Inc.



Power Up: Create New Tests

= Explore root causes and discover new tests
that exhibit the same behaviors or failures

= Search for multiple outcomes from single
actions to expose subtle variables not
currently considered in testing scope

= Reveal interactions and connections
between inputs, conditions and components
to target tests in new areas

=
> )
A /
yy ¥4
-
‘// == 7

© 2008 PerfTestPlus, Inc.



Power Up: Create Generic Tests

* Find repeated defects and genericize
= Use experience and go bug hunting
= Borrow existing generic tests

= Expose and exploit generic flaws
+ Related to technology implementations
+ Rooted in process implementations
* Caused by narrowly focused standards

)
(oo
(&

© 2008 PerfTestPlus, Inc.



Wrap Up

= THANK YOU for joining me today!
= Questions? Feedback?
= Any relevant experiences to share?

= Contact info
Dawn Haynes
dhaynes@perftestplus.com
www.perftestplus.com

@)—
g © 2008 PerfTestPlus, Inc.



