
How Fast Does a Website Need To Be?

Scott Barber

PerfTestPlus, Inc., 1285 Douglas St. Palm Bay, FL 32909, USA

sbarber@perftestplus.com

Abstract. Since at least the late 1990’s, many web development organizations have been asking the question “What is the

industry standard response time for a web page?” As a result various attempts have been made to create such a standard, but

none of these standards have been generally accepted – largely because every web user has a different personal feeling about

whether a particular web page is responsive enough to be considered “acceptable”. This paper demonstrates why a blanket

response time standard is not the best answer in terms of design criteria and explores the critical items that need to be considered

in determining appropriate response time goals for websites.

1. Introduction

As an active member of the international Performance Testing community and as an experienced practitioner, I have seen

questions like this one posed numerous times:

"I’m desperately trying to find out what the industry standard response times are. What are reasonable benchmarks that

are acceptable for Web sites at the moment? Is 1.5 seconds a reasonable target????"

My answer to questions like this one always starts with "It depends on . . . " My friend Joe Strazzere addressed this

particular question quite well on a popular internet forum, as follows:

There are no industry standards. You must analyze your site in terms of who the customers are, what their needs are,

where they are located, what their equipment and connection speed might be, etc., etc. I suspect 1.5 seconds would be a

rather short interval for many situations. Do you really require that quick of a response?[1]

The bottom line is that what seems fast is different in different situations. So how do you determine how fast is fast enough

for your application, and how do you convert that information into explicit, testable requirements? Those are the topics this

article addresses.

2. Considerations Affecting Performance Expectations

Let’s start by discussing the leading factors that contribute to what we think fast is. I believe these considerations can be

divided into three broad categories:

• user psychology

• system considerations

• usage considerations

None of these categories is any more or less important than the others. What’s critical is to balance these considerations,

which we’ll explore individually here, when determining performance requirements.

2.1. User Psychology

Of the three categories, user psychology is the one most often overlooked – or maybe a better way to say this is that user

psychology is often overridden by system and usage considerations. I submit that this is a mistake. User psychology plays

an important role in perceived performance, which is the most critical part of evaluating performance.

Consider this example. I recently filled out my tax return online. It’s a pretty simple process: you navigate through a Web

application that asks you questions to determine which pages are presented for you to enter data into. As I made a

preliminary pass through my return, I was happy with the performance (response time) of the application. When I later

went back to complete my return, I timed the page loads (because I almost always think about performance when I use the

Internet). Most of the pages returned in less than 5 seconds, but some of the section summary pages took almost a minute!

Why didn’t I notice the first time through that some pages were this slow? Why didn’t I get frustrated with this seemingly

poor performance? I usually notice performance as being poor at between 5 and 8 seconds, and at about 15 seconds I’ll

abandon a site or at least get frustrated. There’s no science behind those numbers; they’re just my personal tolerance levels.

So what made me wait a minute for some pages without even noticing that it was slow? The answer is that when I

requested a section summary page, an intermediate page came up that said:

"The information you have requested is being processed. This may take several minutes depending on the information you

have provided. Please be patient."

When I received that message, I went on to do something else for a minute. I went to get a drink, or checked one of my e-

mail accounts, or any of a million other things, and when I came back the page was there waiting for me. I was satisfied. If

that message hadn’t been presented and I had found myself just sitting and waiting for the page to display, I would have

become annoyed and eventually assumed that my request wasn’t submitted properly, that the server had gone down, or

maybe that my Internet connection had been dropped.

So, getting back to the initial question of how fast is fast enough, from a user psychology perspective the answer is still "it

depends." It depends on several key factors that determine what is and isn’t acceptable performance.

The first factor is the response time that users have become accustomed to based on previous experience. This is most

directly tied to the speed of their Internet connection. My mother, for example, has never experienced the Internet over

anything other than a fuzzy phone line with a 56.6-kilobytes-per-second modem. I’m used to surfing via high-speed

connections, so when I sign on at my mother’s house I’m frustrated. My mother thinks I’m silly: "Scott, I think you’re

spoiled. That’s as fast as we can get here, and a lot faster than we used to get! You never were very patient!" She’s right –

I’m not very patient, so I have a low tolerance for poor Web site performance, whereas she has a high tolerance.

Another factor is activity type. All users understand that it takes time to download an MP3 or MPEG video, and therefore

have more tolerance if they’re aware that that’s the activity they’re performing. However, if users don’t know that they’re

performing an activity like downloading a file and are just waiting for the next page to load, they’re likely to become

frustrated before they realize that the performance is actually acceptable for the activity they’re performing.

This leads us to the factor of how user expectations have been set. If users know what to expect, as they do with the tax

preparation system I use, they’re likely to be more tolerant of response times they might otherwise think of as slow. If you

tell users that the system will be fast and then it isn’t, they won’t be happy. If you show users how fast it will be and then

follow through with that level of performance, they’ll generally be pretty happy.

The last factor we should discuss here is what I call surfing intent. When users want to accomplish a specific task, they

have less tolerance for poor performance than when they’re casually looking for information or doing research. For

example, when I log on to the site I use to pay bills, I expect good performance. When I’m taking a break from work and

searching for the newest technology gadgets, I have a lot of tolerance for poor performance.

So with all of these variables you can see why, as Joe Strazzere said, "There are no industry standards." But if there are no

industry standards, how do we know where to start or what to compare against? I’ll describe some rules of thumb later,

when we get to the topic of collecting information about performance requirements.

2.2. System Considerations

System considerations are more commonly thought about than user psychology when we’re determining how fast is fast

enough. Stakeholders need to decide what kind of performance the system can handle within the given parameters. "Fast-

enough" decisions are often based purely on the cost to achieve performance. While cost and feasibility are important, if

they’re considered in a vacuum, you’ll be doomed to fielding a system with poor performance.

Performance costs. The cost difference between building a system with "typical" performance and building a system with

"fast" performance is sometimes prohibitive. Only by balancing the need for performance against the cost can stakeholders

decide how much time and/or money they’re willing to invest to improve performance.

System considerations include the following:

• system hardware

• network and/or Internet bandwidth of the system

• geographical replication

• software architecture

Entire books are dedicated to each of these considerations and many more. This is a well-documented and well-understood

aspect of performance engineering, so I won’t spend more time on it here.

2.3. Usage Considerations

Usage considerations are related to but separate from user psychology. The usage considerations I’m referring to have to do

with the way the Web site or Web application will be used. For example, is the application a shopping application? An

interactive financial planning application? A site containing current news? An internal human resources data entry

application? "Fast" means something different for each of these different applications. An application that’s used primarily

by employees to enter large volumes of data needs to be faster for users to be satisfied than a Web shopping site. A news

site can be fairly slow, as long as the text appears before the graphics. Interactive sites need to be faster than mostly static

sites. Sites that people use for work-related activities need to be faster than sites that are used primarily for recreational

purposes.

These considerations are very specific to the site and the organization. There really isn’t a lot of documentation available

about these types of considerations because they’re so individual, depending on the specific application and associated user

base. What’s important is to think about how your site will be used and to determine the performance tolerance of expected

users as compared to overall user psychology and system considerations. I’ll say more about this in the next section.

3. Collecting Information About Performance Requirements

So how do you translate the considerations described above into performance requirements? My approach is to first come

up with descriptions of explicit and implied performance requirements in these three areas:

• user expectations

• resource limitations

• stakeholder expectations

In general, user and stakeholder expectations are complementary and don’t require balancing between the two. For this

reason, I start by determining these requirements. Once I’ve done this, I try to balance those with the system/financial

resources that are available. Truth be told, I generally don’t get to do the balancing. I usually collect the data and identify

the conflicts so that stakeholders can make decisions about how to balance expectations and resources to determine actual

requirements.

Determining the actual requirements in the areas of speed, scalability, and stability and consolidating these into composite

requirements is the final step. I’ll describe that process in detail later on, but first let’s look at each of the three areas where

you’ll be collecting information about requirements.

3.1. User Expectations

A user’s expectations when it comes to performance are all about end-to-end response time, as we touched on earlier in our

look at user psychology. Individual users don’t know or care how many users can be on the system at a time, how the

system is designed to recover in case of disaster, or what the cost of building and maintaining the system has been.

When a new system is replacing an old one, it’s critical from the user’s perspective for the requirements of the new system

to be at least as stringent as the actual performance of the existing system. Users won’t be pleased with a new system if

their perception is that its performance is worse than the system it’s replacing – regardless of whether the previous system

was a Web-based application, client/server, or some other configuration.

Aside from this situation, there’s no way to predict user expectations. Only users can tell you what they expect, so be sure

you take the time to poll users and find out what their expectations are before the requirements are set. Talk to users and

observe them using a similar type of system, maybe even a prototype of the system to be built. Remember that most users

don’t think in terms of seconds, so to quantify their expectations you’ll have to find a way to observe what they think is

fast, typical, or slow.

During my tenure as a performance engineer, I’ve done a lot of research in the area of user expectations. I believed at first

in the "8-second rule" that became popular in the mid-1990s, simply stating that most Web surfers consider 8 seconds to be

a reasonable download time for a page. But since then I’ve found no reliable research backing this rule of thumb, nor have

I found any correlation between this rule of thumb and actual user psychology. I’m going to share with you what I have

found, not to suggest these findings as standards but to give you a reasonable place to start as you poll your own users.

I’ve found that most users have the following expectations for normal page loads when surfing on high-speed connections:

• no delay or fast – under 3 seconds

• typical – 3 to 5 seconds

• slow – 5 to 8 seconds

• frustrating – 8 to 15 seconds

• unacceptable – more than 15 seconds

In my experience, if your site is highly interactive or primarily used for data entry you should probably strive for page load

speeds about 20% faster than those listed. For mostly static or recreational sites, performance that’s about 25% slower than

the response times listed may still be acceptable.

For any kind of file download (MP3s, MPEGs, and such):

• If the link for the file includes a file size and the download has a progress bar, users expect performance commensurate

with their connection speed.

• If users are unaware they’re downloading a file, the guidelines for normal pages apply.

For other activity:

• Unless user expectations are set otherwise, the guidelines for normal pages apply.

• If users are presented with a notice that this may take a while, they’ll wait significantly longer than without a notice, but

the actual amount of time they’ll wait varies drastically by individual.

When users are made aware of their connection speed, their expectations about performance shift accordingly. Part of my

experiments with users was to create pages with the response times in each of the categories above over a high-speed

connection, then to throttle back the connection speed and ask the users the same questions about performance. As long as I

told them the connection rate I was simulating, users rated the pages in the same categories, even though the actual

response times were very different.

One final note: There’s a common industry perception that pages that users find "typical" or "slow" on high-speed

connections will be "frustrating" or "unacceptable" to users on slower connections. My research doesn’t support this

theory. It does show that people who are used to high-speed connections at work but have slower dial-up connections at

home are often frustrated at home and try to do Internet tasks at work instead. But people who are used to slower

connections rate the same pages as fast, typical, slow, and unacceptable over their typical connection as people who are

used to high-speed connections and try to load these pages over their typical connection.

3.2. Resource Limitations

Limitations on resources such as time, money, people, hardware, networks, and software affect our performance

requirements, even though we really wish they didn’t. For example, "You can’t have any more hardware" is a resource

limitation, and whether we like it or not, it will likely contribute to determining our requirements.

Anecdotally, there’s a lot to say about the effects of resource limitations on performance requirements, but practically all it

really comes down to is this: Determine before you set your performance requirements what your available resources are,

so that when you’re setting the requirements, you can do so realistically.

3.3. Stakeholder Expectations

Unlike user expectations, stakeholder expectations are easy to obtain. Just ask any stakeholder what he or she expects.

"This system needs to be fast, it needs to support ten times the current user base, it needs to be up 100% of the time and

recover 100% of the data in case of down time, and it must be easy to use, make us lots of money, have hot coffee on my

desk when I arrive in the morning, and provide a cure for AIDS."

OK, that’s not something an actual stakeholder would say, but that’s what it feels like they often say when asked the

question. It’s our job to translate these lofty goals into something quantifiable and achievable, and that’s not always an easy

task. Usually stakeholders want "industry standards as written by market experts" to base their expectations on. As we’ve

already discussed, there are no standards. In the absence of standards, stakeholders generally want systems so fast and

scalable that performance becomes a nonissue . . . until they find out how much that costs.

In short, stakeholders want the best possible system for the least possible money. This is as it should be. When it comes to

stakeholders, it’s our job to help them determine, quantify, and manage system performance expectations. Of the three

determinants of performance requirements that we’ve been discussing, the stakeholders have both the most information and

the most flexibility. User expectations very rarely change, and resource limitations are generally fairly static throughout a

performance testing/engineering effort. Stakeholder expectations, however, are likely to change when decisions have to be

made about tradeoffs.

Consider this. Recently I’ve been involved with several projects replacing client/server applications with Web-based

applications. In each case, the systems were primarily data entry systems. Initially, stakeholders wanted the performance of

the new application to match the performance of the previous client/server application. While this is in line with what I just

said about user expectations, it’s not a reasonable expectation given system limitations. Web-based systems simply don’t

perform that fast in general. And I’ve found that even users who are accustomed to a subsecond response time on a

client/server system are happy with a 3-second response time from a Web-based application. So I’ve had stakeholders sit

next to users on the prototypes (that were responding in 3 seconds or less) and had those users tell the stakeholders how

they felt about performance. When stakeholders realize that users are satisfied with a "3-second application," they’re

willing to change the requirement to "under 3 seconds."

Speed, of course, isn’t the only performance requirement. Stakeholders need to either inform you of what the other

requirements are or be the final authority for making decisions about those requirements. It’s our job to ensure that all of

the potential performance requirements are considered – even if we determine that they’re outside the scope of the

particular project.

4. Determining and Documenting Performance Requirements

Once you’ve collected as much information as possible about user and stakeholder expectations as well as resource

limitations, you need to consolidate all of that information into meaningful, quantifiable, and testable requirements. This

isn’t always easy and should be an iterative process. Sending your interpretation of the requirements for comment back to

the people you gathered information from will allow you to finalize the requirements with buy-in from everyone.

I like to think of performance in three categories:

• speed

• scalability

• stability

Each of these categories has its own kind of requirements. In the sections that follow, we’ll discuss how to extract

requirements from expectations and limitations, then consolidate those requirements into composite requirements – or what

some people would refer to as performance test cases.

4.1. Speed Requirements

If you’ve gone through the exercise of collecting expectations and limitations, I’m sure that you have lots of information

about speed. Remember that we want to focus on end user response time. There may be individual exceptions in this

category for things like scheduled batch processes that must complete in a certain window, but generally, don’t get trapped

into breaking speed requirements down into subcomponents or tiers.

I like to start by summarizing some speed-related information I’ve collected verbally – for example:

• normal pages – typical to fast

• reports – under a minute

• exception activities (list) – fast to very fast

• query execution – under 30 seconds

• nightly backup batch process – under an hour

You’ll see that some of that information is fairly specific, while some isn’t. For this step, what’s important is to ensure that

all activities fall into one of the categories you specified. You don’t want every page or activity to have a different speed

requirement, but you do want the ability to have some exceptions to "typical" performance.

Now we must assign values to the verbal descriptions we have and extrapolate the difference between goals and

requirements. You may recall from the Performance Engineering Strategy document that performance requirements are

those criteria that must be met for the application to "go live" and become a production system, while performance goals

are desired but not essential criteria for the application. Table 1 shows the speed requirements and goals derived from the

descriptions above.

Table 1. Speed requirements and goals example

Of course, speed alone doesn’t tell the whole story. Even getting agreement on a table like this doesn’t provide any context

for these numbers. To get that context, you also need scalability and stability requirements.

4.2. Scalability Requirements

Scalability requirements are the "how much" and "how many" questions that go with the "how fast" of the speed

requirements. These might also be thought of as capacity requirements. Scalability and capacity are used interchangeably

by some people.

Here’s an example of scalability requirements that go with the speed requirements above:

• peak expected hourly usage – 500 users

• peak expected sustained usage – 300 users

• maximum percentage of users expected to execute reports in any one hour – 75%

• maximum percentage of users expected to execute queries in any one hour – 75%

• maximum number of rows to be replicated during nightly backup – 150,000

As you can see, we now have some context. We can now interpret that the system should be able to support 300 users with

about a 3-second typical response time, and 500 with an under-5-second typical response time. I’m sure you’ll agree this is

much different t from single users achieving those results.

Another topic related to scalability is user abandonment. We’ll discuss user abandonment in detail in Part 4 of this series;

for now, suffice it to say that a general requirement should be to minimize user abandonment due to performance.

4.3. Stability Requirements

Stability covers a broad range of topics that are usually expressed in terms of "What will the system do if . . . ?" These are

really exception cases; for instance, "What is the system required to do if it experiences a peak load of double the expected

peak?" Another, broader term for these types of requirements is robustness requirements. Ross Collard, a well-respected

consultant, lecturer, and member of the quality assurance community, defines robustness as "the degree of tolerance of a

component or a system to invalid inputs, improper use, stress and hostile environments; . . . its ability to recover from

problems; its resilience, dependability or survivability." While robustness includes the kind of usage stability we’re

focusing on, it also includes overall system stability. For our purposes we’ll focus on usage stability and not on topics such

as data recovery, fail-over, or disaster recovery from the system stability side.

Some examples of stability requirements are as follows:

• System returns to expected performance within five minutes after the occurrence of an extreme usage condition, with no

human interaction.

• System displays a message to users informing them of unexpected high traffic volume and requests they return at a later

time.

• System automatically recovers with no human interaction after a reboot/power down.

• System limits the total number of users to a number less than that expected to cause significant performance

degradation.

Now, let’s put these together into some real requirements.

5. Composite Requirements

The types of requirements discussed above are very important, but most of them aren’t really testable independently, and

even if they are, the combinations and permutations of tests that would need to be performed to validate them individually

are unreasonable. What we need to do now is to consolidate those individual requirements into what I term composite

requirements. You may know them as performance test cases. The reason I shy away from calling these performance test

cases is that my experience has shown that most people believe that once all the test cases pass, the testing effort is

complete. I don’t believe that’s always the case in performance engineering, though it may be for performance testing.

Meeting the composite requirements simply means the application is minimally production-ready from a performance

standpoint. Meeting the composite goals means that the application is fully production-ready from a performance

standpoint according to today’s assumptions. Once these composites are met, a new phase begins that’s beyond the scope

of this series – capacity planning, which also makes use of these composite requirements but has no direct use for test

cases.

Let’s look at how the individual requirements we came up with map into composite requirements and goals.

5.1. Composite Requirements

1. The system exhibits not more than a 5-second response time for normal pages and meets all exception requirements, via

intranet, 95% of the time under an extended 300-hourly-user load (in accordance with the user community model) with

less than 5% user abandonment.

2. The system exhibits not more than a 5-second response time for normal pages and meets all exception requirements, via

intranet, 90% of the time under a 500-hourly-user load (in accordance with the user community model) with less than

10% user abandonment.

3. All exception pages exhibit not more than a 3-second response time 95% of the time, with no user abandonment, under

the conditions in items 1 and 2 above.

4. All reports exhibit not more than a 60-second response time 95% of the time, with no user abandonment, under the

conditions in items 1 and 2 above.

5. All reports exhibit not more than a 60-second response time 90% of the time, with less than 5% user abandonment,

under the 75% report load condition identified in our scalability requirements.

6. All queries exhibit not more than a 30-second response time 95% of the time, with no user abandonment, under the

conditions in items 1 and 2 above.

7. All queries exhibit not more than a 30-second response time 90% of the time, with less than 5% user abandonment,

under the 75% report load condition identified in our scalability requirements.

8. Nightly batch backup completes in under 1 hour for up to 150,000 rows of data.

9. The system fully recovers within 5 minutes of the conclusion of a spike load.

10.The system displays a message to users starting with the 501
st
 hourly user informing them that traffic volume is

unexpectedly high and requesting that they return at a later time.

11.The system limits the total number of users to a number less than that expected to cause significant performance

degradation (TBD – estimated 650 hourly users).

12.The system automatically recovers to meet all performance requirements within 5 minutes of a reboot/power down with

no human interaction.

5.2. Composite Goals

1. The system exhibits not more than a 3-second response time for normal pages and meets all exception requirements, via

intranet, 95% of the time under a 500-hourly-user load (in accordance with the user community model) with less than

5% user abandonment.

2. All exception pages exhibit not more than a 2-second response time 95% of the time, with no user abandonment, under

the conditions in item 1 above.

3. All reports exhibit not more than a 60-second response time 95% of the time, with no user abandonment, under the

conditions in items 1 and 2 above.

4. All reports exhibit not more than a 30-second response time 95% of the time, with no user abandonment, under the

conditions in item 1 above.

5. All reports exhibit not more than a 30-second response time 90% of the time, with less than 5% user abandonment,

under the 75% report load condition identified in our scalability requirements.

6. All queries exhibit not more than a 15-second response time 95% of the time, with no user abandonment, under the

conditions in item 1 above.

7. All queries exhibit not more than a 15-second response time 90% of the time, with less than 5% user abandonment,

under the 75% report load condition identified in our scalability requirements.

These requirements may be more detailed than you’re used to, but I hope you can see the value of insisting upon explicit

composite requirements such as these.

6. Conclusion

No matter how many people ask for one, there’s no industry standard for Web application performance. In the absence of

such a standard we must depend on our own best judgment to determine just how fast is fast enough for our application.

This article has discussed how to determine how fast is fast enough and how to convert that information into explicit,

testable requirements. While explicit requirements based on reasonable performance expectations don’t ensure project

success, they do ensure the ability to evaluate the performance status of a system throughout the development lifecycle, and

that alone can be invaluable.

7. About the Author

Scott Barber is the CTO of PerfTestPlus, Inc. (www.perftestplus.com) and Co-Founder of the Workshop On Performance

and Reliability (WOPR – www.performance-workshop.org). PerfTestPlus, Inc. is a software testing consultancy that

focuses on technical and otherwise challenging software testing, mentoring, methodology development and effective test

resource utilization. Scott's particular specialties are testing and analyzing performance for complex systems, developing

customized testing methodologies for individual organizations, embedded systems testing, testing biometric identification

and security systems, group facilitation and authoring instructional materials.

Scott is the author of the widely recognized article series' "User Experience, not Metrics" and "Beyond Performance

Testing." Scott has presented at such venues as STPCon, WSE, WOPR, AWTA, PNSQC, STAR, SQE Testweek, various

users’ conferences, user groups, SPIN meetings and was invited to be a guest lecturer at MIT based on his article

"Automated Testing for Embedded Devices". Additionally, he has numerous papers and articles published through IEEE,

Better Software Magazine, IBM Developerworks and is a monthly columnist for Software Test and Performance

Magazine. He is a member of the Association for Software Testing, IEEE, American MENSA, the Context-Driven School

of Software Testing and is a signatory to the Manifesto for Agile Software Development. You can address

questions/comments to him on either forum or contact him directly via e-mail.

8. References

1. Performance and Load Testing Forum, www.QAForums.com

2. Smith, 2002

3. Smith, 2002

4. Smith, 2002

5. Savoia, Alberto (2001) “Web Load Test Planning: Predicting how your Web site will respond to stress”, STQE

Magazine.

6. Menascé, Daniel A.; Almeida, Virgilio A.F. (2000), Scaling for E-Business: Technologies, Models, Performance

and Capacity Planning, Prentice Hall PTR.

7. Menascé, Daniel A.; Almeida, Virgilio A.F. (1998), Capacity Planning for Web Performance: Metrics, Models

and Methods, Prentice Hall PTR.

8. Meier, J.D.; Vasireddy, Srinath; Babbar, Ashish; Mackman, Alex (2004) “Improving .NET Application

Performance and Scalability”, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenet.asp,

last accessed June 7, 2004

9. Meier, 2004

10.Barber, Scott (2002), “User Experience, not Metrics”, Rational Developer Network

11.Barber, Scott (2003), “Beyond Performance Testing”, Rational Developer Network

12.Tani, Steve, “In search of Data/Case studies #2”, 6/27/2004, via e-mail

13.White, Nathan, “Tool for Overall Workload Distribution Figure”, 9/19/2002, via e-mail

14.Rodgers, Nigel, “UCML”, 6/16/2004, via e-mail
15.Warren, Brian, Ceridian, “UCML 1.1 Visio stencils”, 6/9/2004, via e-mail

16.Nielsen NetRatings, http://www.nielsen-netratings.com/, last accessed June 8, 2004

17.Keynote Systems, http://www.keynote.com, last accessed June 8, 2004

18.Media Metrix, http://www.comscore.com/metrix/default.asp, last accessed June 8, 2004

19.Barber, Scott (2004), “User Community Modeling Language (UCML 1.1™) for Performance Test Workloads”,

Rational Developer Network

20.Barber (2002)

21.Barber (2002)

22.Barber (2002)

23.Barber, Scott (2003), adapted from actual client results document, client name withheld.

24.Barber (2002)

25.Barber (2004)

