
Get performance requirements right—
think like a user
By Scott Barber W

H
IT

E
PA

P
ER

Performance testing is hard. It’s hard technically, logically, logistically

and managerially. In my years of experience as a performance-testing

consultant, I’ve seen many performance-testing challenges conquered.

I’ve also seen many challenges that the software testing industry as

a whole continues to face, but with which it has made virtually no

progress since Y2K.

It doesn’t surprise me that performance testing is still largely under-done,

under-funded and under-scheduled. It surprises me a little bit that

performance testers are still finding it difficult to interact directly

with development teams due to organizational structure, but this is

changing. It surprises me a lot that we seem to have made no progress

at all in the areas of determining application performance requirements,

goals and meaningful objectives for the performance-testing effort.

This surprises me because my experience suggests that when we do

successfully verbalize—not even quantify, but simply verbalize—

application performance requirements and goals, plus the objectives

of performance testing, the team finds a way to overcome technical,

logical, logistical and managerial challenges to achieve success: a

well-performing application.

Keep that in mind as you read the remainder of this paper. Whether

you are a manager, tester, developer or analyst, the following

discussion applies to you. For organizational purposes, the paper

is broken down into several areas through which we will walk

sequentially to establish requirements, goals and objectives that

will significantly assist your team in assuring adequate application

performance—or at least expected application performance. Don’t

worry too much about whether or not your project applies these

concepts in the same organizational areas or in the same sequence;

the key is simply to think about the concepts and how you can apply

them on your project.

Remember that when all is said and done, only one performance

requirement really matters: Making sure application users are not

annoyed or frustrated by poor performance. Application users don’t

know or care about the results of performance tests, how many

seconds past the “too long” threshold it takes a display to appear on

the screen or what your throughput is. The only thing users notice

is whether or not the application seems slow—and whether they

notice is based on anything from their mood to the application speed

with which they have become accustomed. We’ll talk about how

to convert these feelings into numbers, but never forget to validate

your quantification by putting the application in front of real users.

Identify critical business transactions

Before we can determine the desired performance characteristics

of an application, we have to understand two things: what the

application does and how we expect it to be used. Although it might

be easier if we could reference a table of industry-standard response

times for various actions or activities, no such standard exists. Some

have been proposed, but for every proposed performance standard,

there are at least 100 examples of cases in which achieving the

proposed standard wouldn’t adequately satisfy users of the application.

To identify the most critical business transactions a performance test

needs to include, think in terms of:

>> frequently used transactions

>> performance-intensive transactions

>> business-critical transactions.

An example

If we applied the above thinking to a generic online bookstore

application, we might find that the most frequent transactions are

“search,” “add to cart” and “login”; the most performance-intensive

transactions are “search” and “view my order history”; and the most

important business-critical transactions are “order items,” “create

account” and “check order status.” Other available transactions might

be “view FAQ,” “update account information” and “rate this book.”

2

Practical justification

Experience proves that if we give the transactions that fall into

one of these categories the highest priority in performance testing,

we are more likely to achieve success than if we start by assuming

every transaction will be part of performance tests. Why? Because we

almost never have time to build a test that exercises every possible

transaction. And let’s face it: What are the odds of losing a customer

over the sluggishness of a “FAQ” or “rate this book” feature? Certainly,

if you have the time and resources to test transactions beyond

those that are most critical, it’s even better, but if you get that far, I

encourage you to periodically ask yourself, “What is the most valuable

test I can develop or execute right now?” In the vast majority of

software testing efforts, there isn’t enough time to test everything, so

you should ask yourself that question after every test you run.

Implications on test data

Once you determine the most critical business transactions for

purposes of performance testing, you can begin designing test

data. There are two reasons for moving directly to test data. First,

depending on your application, test data may be complex to generate

or take time to extract from existing production data. Frequently, the

majority of test data comes from a production database supporting a

previous version of the application. When that is the case, production

data often contains confidential information that must be sterilized

before it can be used—which can consume a significant amount of

time. The second reason to identify test data early is once you know

which transactions to focus on and have test data defined, you can

begin executing performance tests immediately after the developers

complete a beta release of the code supporting those transactions.

Bear in mind several key considerations when designing test data for

performance testing. The most obvious consideration is volume. In

one of the most frustrating scenarios, an eight-hour stability test will

fail and crash the system—after executing for 7.5 hours—because your

test scripts ran out of data. Another challenge is the requirement for

unique data. If some or all of your data has to be unique—for instance,

new users may need to have a unique e-mail address—you could

need literally tens of thousands of e-mail addresses, all of which may

need to be aliased to a catch-all account or filtered by the corporate

mail server to keep it from getting overloaded, since the application

sends out confirmation of registration messages. Performance tests are

regularly executed many, many times during both script development

and testing. If you can’t refresh the database at will, you will go

through a lot of unique data during your performance-testing effort.

So no matter how much data you think you need, generate as much as

you reasonably can; you are likely to need it before testing is done.

Speaking of unique data, many a performance test has been proven

invalid as a result of insufficiently unique test data. For example, if

every user in the bookstore example searches for the same book, that

search is likely to be stored in a cache somewhere, thus effectively

eliminating the database from the tests. This classic situation often

leads to performance statistics that are not only wrong but have the

side effect of leading the team to believe an application’s performance

is significantly better than it is.

Another key for designing test data is distribution of data. It is

absolutely critical to have a realistic distribution of test data to

achieve valid performance test statistics. It is equally important

to remember your users are going to be random. They will enter

data you’d never expect, and unexpected data affects performance

the most. Consider the volume of data that would be returned if a

bookstore user searched for all books containing the word “the” in

the title. One wouldn’t expect a user to do that, but trust me, I’ve

seen production log files: It really happens.

Finally, consider including invalid data in your performance tests.

Users will enter invalid data that exercises different components

of the system than valid data, thus changing performance

results. Luckily, in most cases, error trapping invalid data is less

performance-intensive than processing valid data. In these cases,

inclusion of invalid data in performance tests will lead to slightly

better results than non-inclusion, thus misleading you to think

the software is performing adequately when it isn’t. You need to

know your application and make an informed decision rather than

blindly choosing to include or exclude invalid data based on guesses,

assumptions or experience with previous applications.

One last thought on performance test data design: The best possible test

data is test data collected from a production database. The next best

test data is that which is collected through beta releases and/or user-

acceptance testing. If at all possible, get data from real-world usage. No

data generated by testers will ever represent users better than actual data

from human users. A word of caution—be careful when using sensitive

production data that may violate regulatory or privacy rules. If this is a

concern, consider data privacy solutions that can scramble or generate

appropriate test data in the testing environment.

Determine speed criteria for critical business transactions

Once you have identified the business transactions to design

performance testing around, you can begin the process of verbalizing

performance requirements and goals for those transactions, as well

as performance-testing objectives. But before discussing how to

accomplish this task, let me first define requirements, goals and

testing objectives.

3

A new way to think about performance requirements

Performance requirements—criteria that are absolutely non-negotiable

due to contractual obligations, service level agreements or business

needs. Only those criteria whose sub-par performance would

unquestionably lead to a decision to delay a release are absolutely

required.

Performance goals—criteria desired for release, but negotiable under

certain circumstances. For instance, if a response time goal for a

particular transaction is set at 3 seconds, but the actual response

time is determined to be 3.3 seconds, it is likely stakeholders will

choose to release the application and defer performance tuning of

that transaction for a future release.

Performance testing objectives—items that add value to the team

through the process of performance testing but are not intrinsically

quantitative. For example, one objective might be to provide certain

data to systems administrators to assist them in tuning systems

under their purview. Another objective might be to determine peak

application usage that the existing network can support.

Capturing requirements, goals and objectives

Using this terminology, performance requirements are quite easy to

capture. Just review any contracts and legally binding agreements

related to the software under development and get executive

stakeholders to commit to any performance conditions that will

cause them to hold up release of the software into production. The

resulting criteria may or may not be related to any specific business

transaction or condition, but if they are, those transactions or

conditions must be included in performance testing.

Performance-testing objectives are also fairly easy to capture. The

easiest way is to ask each member of the team what he or she

would like tested. That might include providing resource utilization

data under load, generating specific loads to assist with tuning an

application server, or providing a report of the number of objects

requested by each web page. Collecting performance-testing

objectives early in the project is a good habit to get into; periodically

revisiting them and checking in with team members to see if they

would like new objectives added are equally beneficial.

Performance goals are tricky to both capture and quantify. Reports

from many of the best performance testers around the world

corroborate my experience that capturing and quantifying goals

should be treated as separate activities. In my opinion, the single

most common mistake related to performance testing is jumping

straight to quantification without first verbalizing goals qualitatively.

I strongly recommend capturing performance goals for both critical

business transactions and the application as a whole in subjective,

qualitative terms first. For example, ideal initial performance goals

would be “no slower than the previous release,” “at least as fast as

our competitors” and “fast enough that the overwhelming majority

of our potential users will not feel frustrated by poor performance.”

Quantifying goals

After goals are captured qualitatively, you can begin the process of

quantifying them. To quantify a goal of “no slower than the previous

release,” simply execute an equivalent performance test against the

previous release and record the results as a baseline for comparison.

To quantify a goal of “at least as fast as our competitors,” take a

series of single user performance measurements of competitors’

software. Quantifying end-user satisfaction and/or frustration is more

challenging, but, at least for our purposes, far from impossible.

All you really need to quantify end-user satisfaction is an

application and some representative users. You don’t need a

completed application; a prototype or demo will do for a first pass at

quantification. With just a few lines of code in the HTML of a demo

or prototype, you can control how long it takes each page, screen,

graphic, control or list to load. Using this method, create several

versions of the application with different response characteristics.

Then users can try each, telling you in their own words whether

they find that version to be unacceptable, slow, reasonable or fast.

Since you know the actual response times, you can start equating

those numbers to users’ reported degrees of satisfaction. It’s not an

exact science, but it’s a very good starting goal—especially if you

follow up by asking the same questions about performance testing

every time you put an application in front of someone, be it for

functional, user-acceptance beta testing or some other reason. That

way, you are measuring response times in the background as users

interact with the system, allowing you to collect more data and

enhance your performance goals as the application evolves.

While you are quantifying performance goals with actual users, it’s

also a good idea to collect data for other timing-related issues. For

instance, in the absence of log files to parse for actual production

data, the best way to determine how long users spend reading or

interacting with each page or screen is to observe them. Detailed

observations of business transactions will be highly valuable later for

creating tests that represent actual users as closely as possible.

Determine application scalability and capacity criteria

Scalability and capacity, both highly technical areas, are tightly related

and often fall under the umbrella of application performance. In these

4

two areas, you can define quantity and size criteria to correspond with

your speed criteria. Although the terms scalability and capacity are

frequently used interchangeably, they are quite different in critically

important ways. Scalability concerns the change in performance

characteristics when an application experiences increased usage.

Capacity is a reflection of size and volume limitations—typically

related to hardware and configuration. An application may scale

poorly as a result of a capacity limitation, but it may scale poorly

for any number of other reasons as well. In the same way, capacity

limitations don’t always reveal themselves during scalability testing.

How to think about scalability

Up to this point, our discussion of goals and requirements for speed

has centered on one user at a time—which makes sense because a

user doesn’t know, or care, how many others are using the application

or web site. That means in a perfect world, no amount of user volume

will cause any degradation in speed from the user perspective. Of

course, we know this isn’t the way things really work. That’s where

scalability comes in.

At some point, every application will experience a usage volume

that causes speed to be noticeably affected. Inevitably, once that

volume is reached, it takes very little additional volume to slow the

application down to an unusable rate. Performance testers frequently

refer to the volume at which performance begins to degrade quickly

as the “knee” in performance because of the way the condition looks

when graphed (see Figure 1).

 Figure 1: Graphical depiction of scalability

Looking at Figure 1, notice response time, or speed, stays relatively

stable until usage volume reaches the “knee.” We say the application is

“scaling gracefully” in this range of volumes prior to the knee. Our goal,

obviously, is to have an application that achieves speed goals and volume

of usage goals before reaching the knee—which leads to the question,

“How do we determine volume of usage (or scalability) goals?”

Quantifying the volume of application usage

Determining and expressing an application’s usage volume has been

notoriously confusing since the advent of multi-user applications

that communicate via stateless protocols (i.e., Internet-based

applications). Terms like “concurrent users” and “simultaneous users”

have been used frequently (and misused almost as frequently) since

then. Rather than advise you to avoid those terms at all cost, I will

explain what they actually mean.

In Figures 2 and 3, each line segment represents a user activity, and

different activities are represented by different colors. For the sake

of this discussion, the red-line segment represents the activity of

“Load the Home Page.” Users (or possibly sessions or threads) are

represented horizontally across the graph. For simplicity’s sake, let’s

assume the same activity takes the same amount of time for each user.

The time elapsed between the “Start of Model” and “End of Model”

lines is one hour. Let us first look out from the perspective of the

server (in this case, a web server). See Figure 2.

 Figure 2: Server perspective of user activities

Reading the graph from top to bottom, left to right, notice user 1

surfs to page “red,” then “blue,” “black,” “red,” “blue” and “black.”

User 2 also starts with page “red,” but then goes to “green,” “purple,”

etc. Also take note that virtually any vertical slice of the graph

between start and end times will reveal 10 users accessing the

system, meaning this distribution is representative of 10 concurrent,

or simultaneous, users. The server knows 10 activities are occurring

at any moment in time, but not how many actual users are

interacting with the system to generate those 10 activities.

R
es

po
ns

e
Ti

m
e

(s
ec

) 18
16
14
12
10
8
6
4
2
0

1
user

10
users

25
users

50
users

75
users

100
users

125
users

150
users

175
users

200
users

Home Page 4.48 5.07 5.33 6.896.38 4.25 4.484.14 4.59 15.70
Page 1 3.71 4.19 4.854.714.014.77 12.103.67 3.60 3.81

Knee in
Performance

End of ModelStart of Model

Server Perspective of User Activities

Time

5

Now look at a distribution of activities by individual user that would

generate the server perspective graph in Figure 3.

 In this graph, 23 individual users have been captured. These users

conducted some activity during the time span modeled here. All

23 users began interacting with the site at different times. There

is no particular pattern to the users’ order of activities, except

they all started with the “red” activity. These 23 users actually

represent the exact same activities in the same sequence shown

in Figure 2—demonstrating the difficulty in discussing concurrent

users. Many individuals who use the term “concurrent users” aren’t

thinking from the server’s perspective; they are thinking about the

number of people at computers it would take to generate the load

they have in mind. For this reason, I recommend simplifying the

issue by expressing usage volume in terms of hourly users. Assuming

the elapsed time between “Start of Model” and “End of Model” is

one hour, the volume of the test could be expressed as either 10

concurrent users or 23 users per hour.

If we could overlay one of these graphs onto the other, we would

see each activity is distributed identically over time. This is relevant

because when we approach scalability from the perspective of

number of hourly users, it tends to be a fairly straightforward and

easily understandable task.

Calculating hourly usage

To establish a scalability goal for usage volume in terms of hourly

users, first determine your expectations concerning:

>> total number of unique users at the end of the first year

>> distribution of users across the day/week/month

>> length of time a user will interact with the application each time

he or she accesses it

>> number of times per day/week/month/year a single user will

access the application.

For our online bookstore, let’s assume:

>> marketing predicts there will be 1,000,000 unique users during

the first year

>> access is evenly distributed throughout the month, but most

users will typically access the site between 9 a.m. EST and 9

p.m. PST (15 hours) daily

>> users will spend 15 minutes on the site each time they visit, on

average

>> similar sites report each user accesses the site once every other

month on average.

Using that data:

Total monthly users—1,000,000 total users ÷ 2 (i.e., one access

every other month) = 500,000 monthly users

Average daily users—500,000 total monthly users ÷ 30 days per

month = 16,667 daily users

Actual Distribution of User Activities Over Time

End of ModelStart of Model

Time

 Figure 3: Actual distribution of user activities

6

Average hourly users—16,667 average daily users ÷ 15 hours per day

= 1,111 hourly users.

Considering the above numbers are averages and we didn’t account

for peak periods, I recommend setting a graceful scalability goal of

2,500 hourly users.

If pushed, we could convert hourly users to concurrent or

simultaneous users by dividing 2,500 by 4 (because 1 hour = 4 x 15

minutes, the amount of time we assume an average user spends on

the site), yielding a graceful scalability goal of 625 concurrent users.

Moving from scalability to capacity

From scalability goals, we derive capacity goals. Capacity goals

focus not on system usage but on the system itself. For our online

bookstore, we need to determine how much data regarding books,

orders and user information the database will need to store to

support those million users. In addition, we need to determine the

associated hardware, software and configuration requirements for

a database of that size; the network bandwidth our 2,500 hourly

users will require; and the web server(s) throughput that will

support that bandwidth. Because we are implementing a Service-

Oriented Architecture (SOA), we will also have to determine how

many credit cards we expect to process on a daily basis in order to

negotiate the appropriate service level agreement with our credit

card processing service provider.

Obviously, this is only a partial list of possible items in the capacity

category. Every piece of supporting hardware and software should

have some capacity goal associated with it—and all those goals can

be derived from the scalability goal. Conducting this exercise early

in the project will help to eliminate unwanted surprises later, when a

target scalability load would serve only to show the database server is

undersized or the available network bandwidth is insufficient.

Special notes on network capacity and latency

As it turns out, while network capacity and latency problems are

extremely common, they’re also the easiest capacity issues to detect and

diagnose. In fact, in most cases, network capacity and related issues can

be determined before the application is built or bought. The challenge

is determining required network bandwidth, not the available network

capacity. At this point, you can plug in scalability estimates.

In terms of network latency, a surprising number of my projects have

been stymied because I found out very late in the process there was a

multi-second latency between an external firewall and an application.

After witnessing this scenario play out on several occasions, I learned

to include network latency on my list of performance goals and

requirements. Simply having a number ensures latency is determined

before it becomes an unexpected production issue, regardless of the

numbers chosen for goals or requirements.

Identify system and functional reliability concerns

Even though it is common for performance testing to reveal

system and functional reliability defects under load conditions, it

is rare when acceptance criteria or target areas for investigation

are identified in advance. Typically, identifying reliability criteria

and areas for investigation changes the overall performance

testing strategy minimally. Identification does, however, increase

the likelihood of finding issues by motivating teams to enhance

monitoring and data collection during testing.

For our purposes, functional reliability is simply the system’s ability

to meet the same functional requirements under load conditions as

it does in single-user situations. For example, if users are expected

to log in, search for a book and subsequently purchase the book,

they need to be able to complete these tasks with the same degree

of accuracy, security and ease whether one user or many users are

interacting with the system.

System reliability, on the other hand, is nearly a synonym for

availability. The difference is, system reliability encompasses

accuracy and consistency in addition to availability. This differs from

functionality, which does not address service qualities such as proper

and timely display of all expected search results.

All of this seems simple enough to identify from a business

perspective, and it is. The complicated part is identifying which

technical aspects of the system to monitor for indicators that

reliability may be in question. While it is possible to detect the effect

of many reliability issues simply by conducting manual or automated

functional testing when the system is under load, exclusive use of

this method is at best inefficient. It is significantly more valuable to

identify technical areas that can provide early indicators of deeper

problems. These technical areas will vary dramatically from system

to system, but common areas to consider include:

Resource allocation/contention—For example, a certain amount

of memory or a specific number of threads may be allocated to

perform a specific task. These amounts or numbers frequently appear

adequate under low user loads or for small to average volumes of

data; however, they may become fully consumed before the system

reaches its target load. If these areas aren’t monitored, the symptom

may be a server error or slowdown that is difficult to find. With

monitoring, it’s easy to see resource consumption rising and get a

clear indicator of the actual issue prior to observing the symptom.

7

Item or object locking—Most commonly, this is a database-related

problem, but not always. For instance, if an administrator is adding

books to a database, and the database is configured to block access to

the books table during an update, any user searching for a book will

have to wait until the update is complete before the search will be

permitted. This may be desired for data integrity reasons or it may be

problematic, either because an end user thinks there are no results

for his or her search or the search takes an unreasonably long time.

These issues don’t exist only under load, but a good performance

test will include a wide mix of activities occurring at the same time,

making it more likely locking issues will be detected.

Sessions or states—Many applications today track user sessions and/

or the current state of the user. Under load, a system can sometimes

confuse users with one another, causing data corruption or worse;

drop sessions or states that force users to log in again and lose their

place in the transaction; or even fail to time out sessions, claiming

unnecessary resources and causing the system to act as if an even

higher load is applied.

Network connections—In most cases, we expect our networks to

work and have adequate available bandwidth. When networks begin

to get overburdened, packet collisions increase, causing traffic to

increase even further due to re-transmissions. Ultimately, users will

experience slowdowns or a completely unavailable system until

enough of them abandon attempts to interact with the system,

reducing the load to acceptable levels. This is the simplest network

concern. If your system uses RAS, VPN or other types of secure or

less common connections, many other types of network connection

issues could give you reliability headaches if they are not anticipated

and monitored during performance testing.

Determine the geographic distribution of system users

In my experience, most performance-testing projects choose to

evaluate users with various connection speeds, but accept the risk of

not evaluating users from a variety of geographic regions. Anecdotal

research suggests, in terms of risk, this pattern should be reversed.

Counter to what seems to be a common assumption, limited research

and reports from highly respected performance testers indicate

that dial-up and high-speed users rank the same sites and pages as

fast, average, slow and unacceptable when evaluating sites on the

connection speed to which they have become accustomed. As a

result, users seem to spend the same total amount of time on a site

regardless of connection speed, meaning users on slow connections

view fewer pages than those with fast connections. This implies

that sites expecting a notable dial-up audience need to be especially

aware of the efficiency of navigation and transactions, which are

usability issues rather than performance issues.

Geographic diversity, however, can have a significant impact on a

user’s satisfaction with performance. If your site has an international

audience, but is solely hosted from a single server in a single location,

users who happen to access your site from a location that is many

hops from your server will experience increased response time due to

network latency. While network latency is likely out of your control,

it is important to determine the degree to which this phenomenon

will affect your users. There are different approaches to this: One

is to performance-test the site from various geographic locations;

this approach may not be available to you and can be difficult to

orchestrate. Another approach is to profile application behavior

across the network, simulating the impact of varying latency and

bandwidth constraints and measuring the characteristics of the

transaction. This can be done locally by the performance-testing

team, or better still, earlier in the application life cycle by the

application architects and developers to ensure the application is

suited to the network environment. Of course, if you determine this

is a problem, the solution is generally to add mirror sites in various

geographic regions rather than trying to improve performance to

counteract network latency.

Examine unintended consequences

In almost every performance-testing project, a moment of panic

occurs shortly after the application goes live, when the application’s

performance is not as expected. There are many possible reasons,

ranging from poor testing to shockingly high usage, but most often

it is the result of unintended consequences related to the production

environment. We rarely get the chance to execute our performance

tests in the actual production environment, or even in an accurate

mirror of the production environment. Instead, we are often assured

using low-power single PCs to represent virtual instances of high-

power, multi-CPU servers will be “close enough.” The truth is, it

often isn’t. Virtual instances, automatic updates or other operations,

and different hubs, switches, routers, proxy servers and load

balancers all have an impact on application performance. Virtual

machines are generally well-isolated from one another, but not

always as well-isolated as we’d like them to be. Simple things like

scheduled back-up routines that aren’t communicated in advance to

developers and testers can result in serious contention issues if they

overlap with late-night automatic batch jobs.

SOA environments can be even more complex. During testing,

most service providers offer a separate service for users to plug into

for testing and development. Once the new application kicks over

to production, users plug into a new, untested service. Functionally,

these services may be identical, but the production service’s load is

unlikely to match the load that the test and development service

was under. In fact, the production service is unlikely to be housed

Compuware Corporation Corporate Headquarters
One Campus Martius
Detroit, MI 48226

For regional and international office contacts, please visit our web site at www.compuware.com

All Compuware products and services listed within are trademarks or registered
trademarks of Compuware Corporation. Java and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
All other company or product names are trademarks of their respective owners.
© 2007 Compuware Corporation 1/07

in the same location or on the same hardware as the test and

development service.

This means someone needs to be thinking about these things from day

one, making a plan to mitigate the performance risks of putting a new

or updated application into an existing production environment. The

key to this kind of risk mitigation begins with a complete and accurate

understanding of the target environment and all its complexities by

the entire team. From there, the team can begin developing resource

and performance “budgets” for the new application based on what

is actually available for use in the production environment. Budgets

should be monitored during performance testing, and flagged when

they begin creeping toward their allowed value.

Of course, this is no substitute for finding a way to validate resource

consumption, performance, configurations and assumptions by

executing at least a couple of performance tests in the actual production

environment. It will, at least, get people thinking about unintended

consequences early—which is a major step in the right direction.

The bottom line

At the beginning of this paper, I made the point only one

performance requirement really matters: making sure application

users are not annoyed or frustrated by poor performance. Then I

discussed various ways to convert that requirement into valuable

and testable requirements, goals and objectives. I looked at the

application from the end user’s perspective but didn’t forget the

business objective. While parts of this article may not apply directly

to your application or environment, the core message and general

principles probably do.

If you remember nothing else from this paper, remember this:

Performance-related requirements, goals and objectives may not be

absolutely necessary for a skilled performance tester to add value to a

project and application; however, giving a performance tester a set

Compuware Corporation (NASDAQ: CPWR) maximizes the value IT brings to the business by helping CIOs more effectively manage

the business of IT. Compuware solutions accelerate the development, improve the quality and enhance the per formance of critical

business systems while enabling CIOs to align and govern the entire IT portfolio, increasing efficiency, cost control and employee

productivity throughout the IT organization. Founded in 1973, Compuware serves the world’s leading IT organizations, including

95 percent of the Fortune 100 compa nies. Learn more about Compuware at www.compuware.com.

Compuware products and professional services—delivering IT value

of well-defined, quantifiable requirements, goals and objectives that

have not been derived from the application’s business goals—and

validated with feedback from real users—virtually ensures the end user

is likely to be annoyed or frustrated by application performance even

if the application achieves its requirements, goals and objectives. If

your intent in conducting performance testing is to ensure application

users are not frustrated by poor performance, you have to start by

verbalizing the performance-related requirements, goals and objectives

in subjective terms, quantifying those verbalizations where needed, and

then designing performance tests to indicate the degree to which the

requirements, goals and objectives have been achieved. To do any less

is to say, through your actions, end-user satisfaction is not important

for your application.

To learn more about Compuware products and services, visit
www.compuware.com

About the author
Scott Barber is Chief Technologist for PerfTestPlus,
Executive Director of the Association for Software Testing
and co-founder of the Workshop on Performance and
Reliability. His particular specialties are testing and analyzing
performance for complex systems, developing customized
testing methodologies for individual organizations, testing
embedded systems, teaching software testing, facilitating
groups and authoring instructional materials. In addition,
Barber is an international keynote speaker and contributor
to various software testing publications. A member of ACM,
IEEE, American MENSA and the Context-driven School of
Software Testing, he is a signatory to the “Manifesto for
Agile Software Development.” For more information, e-mail
Barber at sbarber@perftestplus.com or visit his web site
(www.perftestplus.com).

