
Suppose that one afternoon, you notice
that you are feeling sluggish, your throat
is a little sore, and you aren’t doing your
best work. You head home early and
make an appointment with your family
doctor. When you go to the doc, she
pokes, prods, asks questions and per-
forms a variety of other tests to deter-
mine what’s wrong. Finally, she deter-
mines that it could be a sore throat, but
based on your history she refers you to a
specialist. The next day you find yourself
in the office of the right specialist, who
diagnoses the cause of your symptoms
and gives you a combination of advice

Scott Barber is CTO of PerfTestPlus Inc. His
specialty is context-driven performance
testing and analysis for distributed multiuser
systems. Contact him at sbarber@perftest
plus.com.

I s your software

performing poorly?

It may be time to call in

a specialist. By Scott Barber

Diagnosing Symptoms
And Solving
Problems

How to Take a Doctor’s
Approach to Exploiting

Performance Bottlenecks

14 • Software Test & Performance JULY 2005 JULY 2005 www.stpmag.com • 15

and prescriptions to help you return to
peak performance.

Sound familiar? It’s the same with
performance testing. You, as a perform-
ance tester, observe that the application
isn’t performing properly, so you inves-
tigate a little further to make sure it’s
really the application and not just a
fluke. After you convince yourself that
the symptoms are real, you find a devel-
oper—the family doc, so to speak—and
describe or demonstrate the symptoms.
The developer has a pretty good idea
about the type of thing that may be
causing the trouble, but he isn’t certain,
so he sends you to the expert on that
area of the application (the specialist),
who finally diagnoses and resolves the
problem, not just the symptoms.

That is what this article is about:
the thought process behind determining
the actual cause of observed perform-
ance issues. If you read my previous arti-
cle “How to Identify the Usual Perform-
ance Suspects” (May 2005, pp. 16-22;
www.stpmag.com/backissues.htm), you
may have already compiled a fairly sub-
stantial catalog of information about your
symptoms of poor performance, which
we categorized as failures, slow spots or
bottlenecks—yet it’s likely that you still
don’t have enough information to effec-
tively diagnose the problem.

A Refresher on n-Tier
Architecture
“All parts should go together without forcing.
You must remember that the parts you are
reassembling were disassembled by you.
Therefore, if you can’t get them together
again, there must be a reason. By all means,
do not use a hammer.”—IBM maintenance
manual, 1925

Before we can really dig into chasing
bottlenecks to and into a specific tier,
we should review some n-tier architec-
ture basics. One of the things that con-
fused me early in my performance test-
ing career was the difference between
the logical and the physical architecture
of a system. I remember one meeting
where the developers were talking
about the “authentication server.” I
walked over to the network diagram and
asked, “Which of these machines is the
authentication server?” In a dismissive
tone I was told, “None of them.” Not
easily discouraged, I asked, “Then
where is the authentication server?” To

which a developer replied, “It’s on
Web1 and Web4.” If that response
confuses you as much as it con-
fused me at the time, the rest of
this section is for you.

Logical architecture. Archi-
tecture used to be easy. Either
you had a client/server (two-
tier) application or you had a
Web-based application (nor-
mally three-tier). During the
early days of three-tier architec-
tures, the tiers often correspond-
ed to physical machines (as shown
in Figure 1), whose roles were defined
as follows:

Client tier (the user’s machine): Pre-
sents requested data.

Presentation tier (the Web server):
Handles all business logic and serves
data to the client.

Data storage tier (the database serv-
er): Maintains data used by the system,
typically in a relational database.

The machine that made up the pres-
entation tier came to be known as the
Web server because it ran the software
used to “serve Web pages.”

At first, as architectures became
more complex, individual machines
were added whenever a new tier was
needed. Later, tiers began to be made
up of clusters of machines that served
the same role (see Figure 2).

The truth of the matter is that no
one actually uses the term “file storage
tier.” They refer to that functionality as
“the file server,” for the same reason
that the presentation tier became syn-
onymous with “Web server” for Web-
based applications.

The key to understanding a logical
architecture is simply this: In a logical
architecture, each tier contains a
unique set of functionality that’s logical-
ly separated from the other tiers. But
even if a tier is commonly referred to
with the word “server,” it’s not safe to
assume that every tier lives on its own
dedicated machine.

Physical architecture. So, you may ask,
what does the actual physical environ-
ment look like? That’s an important
question when it comes to performance
testing—and one that most developers
and stakeholders find hard to believe
matters to the performance tester. The
paradigm that most stakeholders and
developers hold to is that “Testers don’t

need to know anything but how to
access the system from the client
machine.” This is simply not true when
it comes to performance testing. Be per-
sistent and patient in your quest for
information. Over time, they’ll come to
understand.

I’ve called this section “Physical
Architecture,” but that’s actually one of
the least-used terms for what we’re talk-
ing about. Probably the most commonly
used term is “environment” (that is, the
test environment or hardware environ-
ment); it may also be called the “net-
work architecture.” Whichever name
your organization uses, what we’re re-
ferring to here is represented in dia-
grams where actual, physical, tangible
computers are shown and labeled with
the roles they play, along with the other
actual, physical, tangible computers
they talk to. Figure 3 shows the physical
architecture of the system we looked at
logically in Figure 2.

Figure 3, minus the color overlays
and tier labels, is very similar to the dia-
gram I was looking at when I asked the
question “Where’s the authentication
server?” I’m sure you now understand
my confusion a little better, since
there’s no machine in Figure 3 labeled
“Authentication Server.” Instead of try-
ing to explain verbally how the authen-
tication server relates to the physical
architecture, I’ve included tier labels
with color coding in Figure 3.

What we see here is that most logical
tiers consist of more than one physical
machine (often called clusters). We also
see that the machines that make up the
presentation tier (Web1 through Web4)
are all serving double duty as either an
authentication-tier server or a file-stor-
age-tier server. As it turns out, it’s just

JULY 2005 www.stpmag.com • 17

symptoms or clues—or you realize that
you haven’t found any obvious abnor-
malities, symptoms or clues—you
should contact your development team
and discuss what those findings mean.
If you found no clues, maybe it means
that the metrics you collected weren’t
the right ones, or that there wasn’t
enough load on the system, or that you
eliminated a trigger event when you
modified your tests. You probably won’t
know which (if any) of these is the case
without help from your development
team.

In the cases where you do find clues,
the development team definitely wants
to be involved. These clues are what
point to either the next round of tests
or to what they’ll find themselves tun-
ing in the next hours, days or weeks.

The point is, when you get this far
into your performance testing, you and
the development team really form a

consolidated performance testing and
tuning team. Most development teams
aren’t used to working like this, so it’s
up to you to be the team leader and
ensure that there’s constant two-way
communication about tests, results,
clues and suspicions. More than half
the time, I find that I’m able to track
down a bottleneck not by keen insight
or superior testing knowledge, but
rather by listening to developers when
they say things like “I wonder if…,” “Did
you try…?” or “What if we…?” You’ll
also often find that after you show the
results to your development team, one
of them will come back to you later and
say, “I found it,” when you didn’t even
know he or she was looking for it.

Change your test to prove your theory.
Once you see your tier-specific results,

it’ll be almost impossible for you not to
form theories about what caused those
results. This would be like reading a
mystery novel and not trying to guess
“who dunnit” before the final chapter.
You just can’t do it.

Instead of trying to wait for the last
chapter, I recommend embracing
those theories and changing your test
to prove or disprove them immediate-
ly. Once again, you’ll likely need the
assistance of the development team,
but by this point you should have
achieved a good working relationship
with them. Besides, most developers
I’ve worked with really seem to enjoy
this part of the performance testing
process. Honestly, I have to agree with
them. To me, this is the fun part; it
offers the same excitement as a treas-
ure hunt did when I was a kid: “I won-
der what we’ll find if we follow all the
clues correctly?”

Why Exploit Identified
Bottlenecks?
Now that you know what the bottleneck
is functionally and where it is architec-
turally, you’re ready to track down the
cause. If you’ve made it this far, none of
your other tests have isolated the bottle-
neck sufficiently to resolve it. That’s
what exploiting bottlenecks is all about.
Exploit means to apply, employ or exer-
cise something. You exploit a bottle-
neck by building very specific tests that
exercise the weaknesses in the system as
an aid to the tuning effort.

Inevitably, whenever I get to this
point in a training course, I’m asked, “If
we know where the bottleneck is, why
do we need to exploit it? Isn’t that
redundant?” The truth is that it’s only
redundant if the development team

already knows what they need to tune
and how to tune it. More often, just
identifying the tier isn’t enough. To
explain why this is so, let’s return to our
hydrodynamics analogy from the May
article, in which we compared the flow
of activity through a software system to
the flow of water through a pipe system.

Figure 4 is a simplistic representa-
tion of what the inside of a tier might
look like if it were a hydraulics system.
The pipe that represents our network
comes into the tier from the top left.
Once the water leaves that pipe, it
enters a pool with various pipes exiting
the bottom. This represents requests
entering a processing queue where
there are a limited number of process-
ing units (likely threads) to handle
those requests. Which “exit pipe” the
request flows through is based on the
type of request that’s being made.
Notice that the exit pipes are of various
sizes and each one may or may not be
open at a given point in time.

Without delving too deeply into the
different possibilities for request pro-
cessing, suffice it to say that any given
tier can have more or fewer processes
(pools) for a request to pass through,
depending on the specific request
and/or the design of your system. The
number, size and availability of exit
pipes from these processes can have a
significant effect on the overall per-
formance of the system. I’m sure you
can see that just pointing to the tier and
saying, “The bottleneck’s in there” prob-
ably isn’t good enough. To tune the sys-
tem, we often need to help developers
narrow the focus down to the specific
process or even to the parameters
(inputs and outputs) of that process
(symbolized by an exit pipe). That’s
what we do when we exploit bottlenecks.

Ways to Exploit Identified
Bottlenecks
So far we’ve been discussing how to
modify tests to focus on bottleneck res-
olution. Now we’re going to modify
existing tests again and/or generate
new ones to get more information
about exactly what’s causing the bottle-
neck in the tier you’ve identified. I’ll
explain how to exploit bottlenecks for
tuning by finding bounds conditions,
breakpoints and resource constraints.

Find bounds conditions. One of the
ways to exploit bottlenecks is to execute
tests that focus on identifying bounds

16 • Software Test & Performance JULY 2005

about as common for a logical tier to be
spread over several machines as it is for
a physical machine to host the function-
ality of more than one logical tier. It
should be clear that if you can’t identify
which tier is holding up progress, tuning
becomes an exercise in trial and error.
So the next question is, how do you fig-
ure out which tier is causing the issue?

Capturing Resource Utilization
And Response Time by Tier
Most operating systems come with
resource-monitoring software, like Perf-
mon for Microsoft and PerfMeter for
Solaris, to assist with this task. There are
many other resource-monitoring tools
on the market. It’s usually just best to ask
your developers and administrators
which tools they’re using, and use them.
Note that the challenge when using a
resource-monitoring tool in conjunc-
tion with your load-generation tool is to
properly correlate your results, so work
with your systems administrators on this.

There are several ways to capture
response time by tier involving either
special tools or instrumentation. I
should caution you that tools are gen-
erally very specific to your application
architecture. These “activity timing”
tools are commonly known as perform-
ance analysis tools and/or perform-
ance profilers. The methods involving
instrumentation require close coordi-
nation with your developers and admin-
istrators and are also very specific to
your application.

Because both methods are so specif-
ic to the environment you’re testing
and the tier you want to isolate, it’s
beyond the scope of this article to go
into greater detail. Instead, allow me to
describe a third method employing the
load-generation tool you already have.

Let’s assume that we have a simple
three-tier system like the one shown in
Figure 1. During our initial tests, our
load-generation machine was located
between the Client Tier and the Presen-
tation Tier (the Web server).

Now, let’s further assume that
through testing we’ve determined that
only transactions that interact with the
database cause symptoms of poor per-
formance. We’ve further established
that these aren’t failures; the symptoms
span multiple activities, and the entire
system is affected by the symptoms. By
monitoring resources, we’ve found that
the database often shows 100 percent

CPU utilization and runs out of memo-
ry, and that there’s often a queue of
requests to enter the database under
loads significantly below the target load.

Based on this, we decide with our
team that we want to test just the data-
base server under load and eliminate
the Web server response times from the
equation. We further decide to write
some custom load-generation scripts by
hand (that is, not using recording) to
send SQL commands directly to the
database. To use these custom scripts,
we need to ensure that our load-genera-

tion machine can “see” the database
server directly, which is conceptually
equivalent to moving it from between
the Client and Presentation tiers to
between the Presentation and Data
Storage (database server) tiers.

A second way is to use the tools we
already have, placing a second load-gen-
eration machine between the Presen-
tation and Data Storage tiers, to capture
the traffic against the database generat-
ed by the load test as it is being executed
by the first load-generation machine,
located between the Client and Presen-
tation tiers. This will give us a recorded
script to edit that contains the entire
load being placed on the database in a
way that’s easy to play back and evaluate.

In this case, our script represents the
requests that are sent to the database by
the Web server. Executing these scripts
and reviewing the response times will
show us conclusively how much of the
end-to-end test time is being spent in
the database. This information is al-
most always what the database adminis-
trator needs in order to find and/or
tune the issue.

There are hundreds of third-party
tools available to assist with the capture
of resource-utilization statistics and

response time by tier. There are fewer,
but still many, third-party tools that pro-
vide a combination of these functions.
These are commonly known as per-
formance monitoring tools.

It’s beyond the scope of this article to
go into details about what a performance
monitoring solution can add to your per-
formance testing exercises, but I encour-
age you and your development team to
jointly research a performance monitor-
ing tool that fits your needs. If your
organization conducts performance
engineering testing exercises often, the

time you’ll save by obtaining and using
one of these tools will far outweigh the
cost of the tool in a short period of time.

Interpreting Tier-Specific
Metrics
Often, tier-specific metrics leave little
doubt as to their meaning, but even
these detailed metrics may not hold all
the answers. I’ve found a number of
methods useful, individually and collec-
tively, for interpreting tier-level metrics.

Look for the obvious. First and fore-
most, look for the obvious. In one situa-
tion, for example, the obvious was that
the Web server (Presentation Tier, more
precisely) was eating up four seconds
every time data passed through it.
Another example can be seen in the scat-
ter chart shown in Figure 5. This chart
represents a test where the response
times experienced a significant slow-
down about halfway through the test exe-
cution. These are the kinds of clues
we’re looking for. Unfortunately, in both
cases, these were still both symptoms and
not causes. In both cases, those symp-
toms gave the development team and
myself ideas about where to look next.

Consult the development team. Once
you find some obvious abnormalities,

PERFORMANCE MANAGEMENT PERFORMANCE MANAGEMENT

1. A THREE-TIER ARCHITECTURE

2. A MULTI-TIER LOGICAL ARCHITECTURE

JULY 2005 www.stpmag.com • 19

message—indicating an overflow error.
While this error didn’t make sense to
most of the team, it did make sense to
the administrator of the report server.
From that error message she was able
to determine that when the report
server received a request for a report,
it was sending a request to get the data
from the database and putting that
data into a single processing queue.
This meant that the data for all of the
reports was stacking up and only one
report was being generated at a time,
where the actual intent was for this
server to have five parallel processes
and not just one. After a few calls to
support, the administrator was able to
configure the report server to handle
the five parallel processes, and our
problem was resolved.

Find resource constraints. While moni-
toring resource utilization, you and
your development team should be look-
ing for resource utilization that’s above
the expected volume and/or above the
recommended usage for that particular
resource. If adding stress (such as
adding additional high-volume search-
es) pushes resource utilization to a
higher than expected rate, this may
indicate that the activity being tested
isn’t managing that resource adequately
during less stressful times, either. The
inadequate resource utilization may not
be obvious during low-stress situations,
but it still may be the cause of the symp-
toms. Only by exploiting the bottleneck
by intensifying it can we find out for
sure if resource utilization is the cause.

The most common resource con-
straint is memory utilization. Under
large loads, one or more of your servers
is likely to experience memory utiliza-
tion consistently greater than 80 per-
cent. Once this number grows to more
than 80 percent, performance almost
always suffers. In these cases, it’s up to
the developers and architects to deter-
mine if the application is managing
memory poorly, if configuration set-
tings need to be adjusted or if more
memory is required.

Handing Off Leadership
To the Development Team
You may have noticed that the farther
down the trail of chasing bottlenecks
you go, the more closely you’re working
with the development team. Interacting
with the development team is crucial to
the process of building tests to exploit

bottlenecks. You’ll very rarely have a
deep enough understanding of the sys-
tem to build tests and collect data at this
level on your own. In cases where you’re
able to exploit the bottleneck by simply
modifying test data, inputs and load,
the development team is still critical in
the results interpretation stage.

As your tests get narrower and nar-
rower, and closer and closer to the actu-
al code, the development team becomes
increasingly critical in the test develop-
ment stage. The development team is
also normally where the best guesses will
come from as to what tests to develop to
try to exploit a particular bottleneck,
not just how to develop them, as the
examples below will show.

This is the point of transition from
the testing phase, where the perform-
ance tester leads and the development
team assists, to the tuning phase,
where the development team leads and
the performance tester assists. It’s
important to explain to the develop-
ment team that now you’re helping
them, not the other way around, and
that you’re going to exploit bottle-

necks with the intent of helping them
find the root cause of the symptom,
not just to ferret out more symptoms.

Be available to the development
team, and be open to building and exe-
cuting on a moment’s notice tests that
you may not completely understand
(though it’s still a good idea to ask ques-
tions and gain understanding through-
out the process). Don’t be discouraged
if developers start digging more inde-
pendently at this point in the process.

As an illustration of the crucial role

the development team can play at this
point, let’s review the scatter chart in
Figure 5. This chart shows a test run
with caching at the front, a good run for
a period after that, then a mostly classic
slowdown toward the midway point.

In an attempt to determine the
cause of that slowdown, we looked at
several common resource statistics asso-
ciated with the servers involved. We
found that the CPU utilization of the
application server reached unaccept-
able levels shortly before the response
times increased.

As you may already suspect, we
decided to monitor the CPU queue
length for that same test. The reason I
stress “we” is that it was the developer’s
idea to look specifically at that metric,
which wasn’t among those that I had
initially recommended.

Monitoring the CPU queue length
resulted in the chart in Figure 6, which
shows a direct correlation between
queue length and poor performance. I
can’t say whether I would have looked
at that metric eventually, but for what-
ever reason, I wasn’t planning to look at

it initially. That open communication
between the developer and myself saved
at least one extra step and revealed the
actual cause of the poor performance
in this test.

Incidentally, the test that generated
those results was a test that had been
created to exploit what we thought was
a database bottleneck. The initial symp-
toms had been that activities writing to
the database were slow. Building tests
that exploited those activities and mon-
itoring various resources allowed us to

PERFORMANCE MANAGEMENT

conditions rather than running under
expected normal conditions. These
bounds conditions are a little different
from the bounds conditions we test dur-
ing functional testing. We’re not talking
about testing to see if an input field
accepts numbers with more than six
digits correctly. We’re talking about test-
ing the bounds of performance—for
example, seeing how the system per-
forms when executing only searches
that return excessively large amounts of
data, such as searching for all book
titles that include the letter “t” on
Amazon.com or executing an extremely
high volume of searches concurrently.
These types of tests will often show
results that allow us to say more than
just “This search seems slow.”

Under these extreme conditions, we
look for information like the following:

• How many searches can I do before
the memory starts to rise above 80
percent utilization on the database
server?

• How many rows of data must I be
requesting before the system
returns a timeout message?

• How many times can this activity be
conducted in a 10-minute period
before all of the available threads
are consumed?

Each of these facts tells us something
about bounds conditions. In both func-
tional and performance testing, unex-
pected behavior tends to occur under
these conditions. In performance test-
ing, these unexpected behaviors often
point us to the actual cause of the
observed symptoms under expected
usage conditions.

On a recent project, we found that
after we applied SSL to our Web site, all

of the pages slowed down by about 30
percent. While we expected the login
activity to slow down, we didn’t expect
subsequent pages to be slower.

At first we thought that the login
process itself was slowing down the
entire Web server, so we created a “login
only” test and monitored the resources
on the Web server (where the logical
Authentication Tier resided). This re-
vealed that logging in under load was
not the problem, so we decided to
exploit the bottleneck instead by look-
ing for the bound where performance
degraded.

It turned out we didn’t have to look
far. We started by limiting our test to a

single user logging in, navigating to the
search screen, searching, and logging
out, and we monitored the Authenti-
cation Tier through full logging. When
we evaluated that log, we found that
every page was checking with the
Authentication Tier to see if the user
had permission to access that page
rather than simply getting the ACL
(access control list) from a client-side
cookie as intended.

Once the developers saw that the
problem was with the “retrieve permis-
sions” process in the Authentication
Tier, they were able to resolve the prob-
lem in less than an hour. The perform-
ance of all pages improved to what it
had been before SSL was applied, and
login gained back 50 percent of the per-
formance it had lost when SSL was
applied.

Find breakpoints. Deliberately caus-
ing the application to fail by running it
under conditions even more extreme
than the ones under which it shows
symptoms of poor performance is
another method of exploiting a bottle-
neck. Such breakpoints, where the bot-
tleneck becomes a failure, are often
uncovered while searching for and test-
ing at bounds conditions. Like finding
bounds conditions, determining the
point at which the system fails due to an
extreme performance case will likely
point to a cause.

Information about breakpoints will
most often be found in the application
server logs. Breakpoints are commonly
identified by error messages being
returned, system or browser timeouts
occurring, and/or nothing returning at
all (that is, the page just sitting there
forever). Any of these conditions can
yield valuable information to the devel-
oper who’s trying to help track down
and tune the bottleneck.

I also used this method on a recent
project. In this case, we had determined
that reports seemed to slow down dra-
matically under load. Through all of
our monitoring, we were unable to
track down the reason. Monitoring the
report server seemed to point to the
database returning data slowly, but
monitoring the database showed the
requests coming back quickly. We final-
ly decided to just increase the number
of requested reports until we received
an error message.

After increasing the reporting load
significantly, we did receive an error

18 • Software Test & Performance JULY 2005

PERFORMANCE MANAGEMENT

5. SCATTER CHART DEPICTING A SLOWDOWN

3. PHYSICAL ARCHITECTURE WITH LOGICAL OVERLAY

Client
Internet Firewall

Load
Balancer

Web 1

Web 2

Web 3

Web 4

App 1

App 2

Database

Report

Client Tier

Authentication Tier

Authentication Tier

Presentation Tier

Authentication
Tier Reporting

Tier

Data Storage
Tier

4.TIERS AS A PIPE SYSTEM

20 • Software Test & Performance JULY 2005

track the actual cause to code process-
ing in the application server.

Moving Into a Different
Kind of Testing
The vast majority of performance test-
ing classes and publications are
focused on what could be categorized
as black box performance tests—that
is, tests created without reference to
the source code or other information
about the internals of the product. In
the words of Florida institute of
Technology professor Cem Kaner,
author, along with James Bach and
Bret Pettichord, of “Lessons Learned
in Software Testing” (Wiley, 2001),
“The black box tester consults external
sources for informa-
tion about how the
product runs (or
should run), what
the product-related
risks are, what kinds
of errors are likely
and how the pro-
gram should handle
them, and so on.”

This is in contrast
to white box testing,
which Kaner defines
as “testing with thor-
ough knowledge of
the code.” In one
discussion, Kaner
goes on to say, “The
programmer might
be the person who
does this. I’ve seen
members of independent test groups
do this type of testing. Some risks that
are invisible to the black box tester
aren’t too hard to see in the source,
such as weak error handling, a weak
model of interrupt-triggering events,
or excessive coupling of different parts
of the program. The test groups that
do this type of work usually specialize
one or a few people who do nothing
but read the source code looking for
interesting/risky areas and then design
thorough tests to exploit those risks.”

When we began designing our new
tests in interaction with the develop-
ment team, we started getting into the
area of tests that could be classified as
gray box tests. According to Kaner, the
design of gray box tests is educated by
information about the code or the pro-
gram operation of a kind that would
normally be out of view of the tester.

Kaner makes the point that the distinc-
tion between black box, white box and
gray box testing is in the thinking of
the tester. Thinking that’s focused nei-
ther on the usage-related world exter-
nal to the program nor on the source
of the program, but is more focused on
the technical relationship between the
program and the system, is what he
refers to as gray box testing.

Whether or not you like those par-
ticular terms, I’m certain you’ll agree
that at this level of bottleneck detec-
tion and tuning we’ve moved from
user-experience (usage-related) tests
to tests that are focused on the techni-
cal relationship between the program
and the system. It’s often the case that

exploiting bottlenecks isn’t going to be
done simply by modifying user-centric
load-generation scripts.

As it turns out, most of the tests we
performance testers conduct are gray
box tests. While we begin designing our
tests thinking about how users will inter-
act with the system, we then start think-
ing about how the system works and
modify our initial designs accordingly.
For example, we may add a script that
runs a particular report simply because
we know that it accesses data from a par-
ticularly large table in the database. The
fact that we decide to create that script
based on the design of the database
makes it a gray box test.

Knowing When to Put The
Load-Generation Tool Away
Load-generation tools can see only so
far into the application. No matter how

good your tests and analysis are, you’ll
sometimes have to dig into the applica-
tion with your development team, often
all the way to the code level.

Currently there are no load-genera-
tion tools on the market that are
designed for this kind of grey/white
box testing, though there are two
scheduled for release this year. Because
of this, one of the best ways you can
assist the development team at this level
is with tools that complement your load-
generation tool.

An example of a tool at your dispos-
al is the test harness. Most of the time
the test harness is built by the develop-
er to complement the performance
tester’s individual skills and scripting

preferences to ex-
ploit a very specific
area of the applica-
tion that the devel-
oper wants to be
able to test in a
repeatable way.

If you can’t ex-
ploit bottlenecks
using test harnesses
and hand-coded
scripts, it’s probably
time for a third-
party tool to com-
plement the load-
generation tool.
The tools I’m refer-
ring to are often
classified as “code
analyzers,” “runtime
analyzers,” “code

profilers” or even “performance profil-
ers.” You can add a lot of value by
knowing how to use one or more of
these tools in conjunction with the
load-generation and/or bottleneck-
focused scripts you’ve already created.

Making A
Successful Diagnosis
As you can see, exploiting perform-
ance bottlenecks really does follow the
same thought process as a doctor
employs in diagnosing the symptoms
of an illness. I suspect that virtually all
of us find the process of diagnosing an
illness to be at least fairly natural.
Applying the principles of the diagnos-
tic process to observed symptoms of
poor performance will likely have a
similar result—grumbling about hav-
ing to do it, but being very glad you did
once you start feeling better. ý

PERFORMANCE MANAGEMENT

6. MONITORING THE APPLICATION SERVER’S CPU QUEUE

